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Abstract—Due to the complexity of software systems, defects
are inevitable. Understanding the types of defects could help
developers to adopt measures in current and future software
releases. In practice, developers often categorize defects into
various types. One common categorization is based on fault
triggers of defects. Fault trigger is a set of conditions which
activate a defect (i.e., fault) and propagate the defect into a
failure. In general, there are two types of defect based fault
triggering conditions, Bohrbug and Mandelbug. Bohrbug refers
to a bug which can be easily isolated, and its activation and error
propagation is simple. Mandelbug refers to a bug whose activation
and/or error propagation is complex (e.g., a time lag between the
fault activation and the failure occurrence). With these category
labels, developers can better perform post-mortem analysis to
identify common characteristic of the defects, and design specific
fault-tolerance mechanisms.

However, in most software systems, these category labels are
often unavailable. To address this problem, in this paper, we
propose a text mining solution which categorize defects into fault
trigger categories by analyzing the natural-language description
of bug reports. A previous study shows that Mandelbug is
more complex and needs more time to be fixed. Thus, to better
identify Mandelbugs, we propose a novel fUzzy Set based fEature
Selection algorithm named USES, which selects the features (i.e.,
terms) which have high ability to distinguish Mandelbugs from
Bohrbugs. USES first caches a set of terms based on their fuzzy
affinity scores to Bohrbug or Mandelbug. Next, it iterates many
times, and in each iteration, it selects a subset of terms, and
builds a classifier on these terms. USES selects the classifier and
the terms which could achieve the best performance on a training
data. We evaluate our solution on 4 datasets including Linux,
Mysql, Apache HTTPD, and AXIS containing a total of 809
bug reports. We show that USES with naive Bayes multinomial
achieves the best performance; it achieves Mandelbug F-measure
scores of 0.298 – 0.615. We also compare USES with other baseline
approaches. The results show that USES on average improves
Mandelbug F-measure scores of the best performing baseline by
12.3%.

Keywords—Fault Triggers, Bohrbug, Mandelbug, Feature Se-
lection, Fuzzy Set, Categorization, Machine Learning

I. INTRODUCTION

Defects (i.e., bugs or faults) are prevalent in software
systems, and appear in all stage of software development life-
cycle. A previous study shows that the cost of debugging in a
software system consumes 50% - 80% of the development and
maintenance cost [1]. There are various kinds of defects. Some
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kinds of defects are easy to reproduce, and show consistent
behaviors under the same inputs. Some kinds of defects are
hard to reproduce, and their behaviors are inconsistent when
the same inputs are given, e.g., concurrency defects [2], [3]. To
ensure the reliability of software systems, the management of
defects is necessary. Understanding the types of defects could
help developers to perform post-mortem analysis, and adopt
corresponding measures, such as adding more human resource,
refactoring, and developing an automated defect detection tool,
to prevent the recurrence of defects in future software releases.

One common categorization is based on fault triggers of
defects. Fault trigger is a set of conditions which activate a
defect (i.e., fault) and propagate the defect into a failure. In
some cases, fault triggers are complex, which would cause the
failures become extremely hard to reproduce. For example,
the timing of events and interactions with other systems (e.g.,
operating system) [4]. Traditional dynamic testing techniques
cannot easily detect these kinds of faults, due to the challenges
of reproducing complex fault triggers in a test environment. In
general, Grottke and Trivedi propose two categories of defects
based fault triggering conditions, Bohrbug and Mandelbug [5].
Bohrbug refers to a bug which can be easily isolated, and its
activation and error propagation is simple. Mandelbug refers
to a bug whose activation and/or error propagation is complex
(e.g., a time lag between the fault activation and the failure
occurrence).

Albeit the benefits of categorizing defects into types, in
most software systems, these category labels are often unavail-
able as such categorization potentially involves much manual
effort, and the project team may not have the budget for defect
categorization. Thus, there would be a need for an automated
tool which could help developers in assigning categories to
defects during post-mortem analysis.

In this paper, we propose a text mining solution which
categorize defects into two fault trigger categories: Bohrbug
and Mandelbug. Our goal is to automatically classify a defect
into one of the two categories according to its natural-language
description available in the corresponding bug report. Cotroneo
et al. conclude that Mandelbugs need longer time to fix, and
require specific strategies to be dealt with [6]. For example, in
Linux, the average time to fix a Bohrbug is 157 hours, while
the average time to fix a Mandelbug is 230 hours [6]. Also
in some projects (e.g., apache HTTP and AXIS), the number
of bugs which belongs to Mandelbug category are much less
than these of Bohrbug category. Thus, we focus on identifying
Mandelbugs.
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We propose a novel fUzzy Set fEature Selection algorithm
named USES, which selects the features (i.e., terms) which
have high ability to distinguish Mandelbugs from Bohrbugs. In
more detail, USES first computes the fuzzy affinity scores for
each terms to each category (i.e., Bohrbug and Mandelbug).
Then, USES caches a set of terms which have the highest
fuzzy affinity scores to Bohrbug or Mandelbug. Next, it iterates
many times, and in each iteration, it selects a subset of terms,
and builds a classifier on these terms. Also, USES evaluates
the performance of each of the classifiers on a training data.
Finally, the classifier and the terms which could achieve the
best performance on the training data are used to predict the
categories of new unlabeled defects.

We evaluate our solution on 4 datasets including Linux,
Mysql, Apache HTTPD, and AXIS containing a total of 809
bug reports.1 We show that USES with naive Bayes multinomi-
al [7] achieves Mandelbug F-measure scores of 0.298 - 0.615
which outperforms a number of baseline approaches. We com-
pare USES with other state-of-the-art classification techniques
without feature selection, e.g., naive Bayes multinomial [7],
naive Bayes [7], SVM [8], logistic regression [8], and RBF
network [9], and naive Bayes multinomial with information
gain [8] as the feature selection technique. The results show
that USES on average improves Mandelbug F-measure scores
of the best baseline techniques (i.e., naive Bayes multinomial
with information gain as the feature selection technique) by
12.3%.

The main contributions of this paper are as follows:

1) We propose a text mining solution that automatical-
ly classifies defects into categories based on fault
triggering conditions. These categories could be used
for post-mortem analysis, and design fault-tolerance
mechanisms.

2) Considering Mandelbugs are complex and need more
time to fix, we propose a fuzzy set feature selection
method USES to select important features from the
natural language description of defects.

3) We perform an empirical evaluation of our auto-
mated defect categorization tool. The result based
on 809 manually categorized defects shows that our
tool improves a number of baseline techniques by a
substantial margin.

The remainder of the paper is organized as follows. We
describe the preliminary materials and motivating examples in
Section II. We outline the overall framework of our defect
categorization based on fault triggering conditions solution
in Section III. We elaborate how the features are extracted
from bug reports in Section IV. We present fuzzy set feature
selection method USES in Section V. We report the experiment
results in Section VI. We present the threats to validity of our
paper in Section VII. We describe related work in Section VIII.
We conclude and mention future work in Section IX.

II. PRELIMINARIES AND MOTIVATING EXAMPLE

In this section, we first describe preliminary materials
on fault trigger categories in Section II-A. Next, we present
examples which motivate the need for classifying defects into
fault trigger categories in Section II-B.

1We have made the dataset publicly available from: http://goo.gl/aeKoGR

Fig. 1. An Example of Bohrbug in AXIS with BUGID=AXIS-1261.

A. Fault Trigger Categories

Grottke and Trivedi define two types of defects based
on their fault trigging conditions, i.e., Bohrbug and Mandel-
bug [5]. These two categories are related to the conditions of
fault activation and error propagation.

Definition 1: (Bohrbug. ) A bug (i.e., fault) which can be
easily isolated and manifests consistently under a well-defined
set of conditions, since its activation and error propagation lack
“complexity”.

Definition 2: (Mandelbug. ) A bug which is difficult to
isolate, and/or the failures caused by it are hard to reproduce.
Its activation and/or error propagation conditions are complex,
where “complexity” can take the following two forms:

1) A time lag between fault activation and failure oc-
currence.

2) The activation and/or error propagation conditions
depend on interactions between the conditions oc-
curring inside the application and conditions that
accrue within the system-internal environment (e.g.,
hardware, operating system).

According to Grottke and Trivedi, a software defect only
belongs to exactly one of the above two categories [5]. Thus,
these two types are complementary of each other.

B. Motivating Examples

Figure 1 shows an example of Bohrbug in AXIS with
BugID=AXIS-408.2 It describes a defect that the method
new SimpleAxisServer()).start() does not return
anymore. To reproduce this defect, developers just need to call
the method SimpleAxisServer()).start() in their
source code.

Figure 2 shows an example of Mandelbug in AXIS
with BugID=AXIS-1261.3 It describes a defect that causes a
NullPointerException to be thrown out. The root cause
of this defect is a race condition. Notice that this defect would
be hard to reproduce, since it only happens occasionally. Thus,
the defect is classified as a Mandelbug by Cotroneo et al. [6].

Observations and Implications. From the above 2 defects,
we can observe the following:

1) Considering both Bohrbug and Mandelbug, we find
Mandelbug would be difficult to fix, since it is hard

2https://issues.apache.org/jira/browse/AXIS-408
3https://issues.apache.org/jira/browse/AXIS-1261
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Fig. 2. An Example of Mandelbug in AXIS with BUGID=AXIS-1584.

to reproduce, and its fault trigging conditions are
much more complex. Also previous study shows that
Mandelbug needs more time to fix [6]. From the
descriptions of defects in Figure 1 and 2, we notice
that the defect in Figure 2 is much more difficult to
fix, since it is a concurrency bug, and to reproduce
the occurrence of the bug, developers need to collect
more information.

2) Some terms in a bug report are good indicators to
identify whether it is a Mandelbug, while some other
terms are noise. For example, in Figure 2, the terms
“concurrent”, “occasionally” could help to identify
a Mandelbug; while the terms “error”, “test”, and
“class” are noise since both Bohrbug and Mandelbug
are likely to use these terms when describing a defect.
Thus, it is good to select good indicators (i.e., useful
terms), and remove noise (i.e., useless terms) from
the natural-language description of a defect.

The above observations tell us that we could use the
natural-language description of defects to categorizes defects
based on their fault triggering conditions, and selecting good
terms (indicators) from defects could help to improve clas-
sification performance. Therefore, an automated tool which
applies text mining techniques on the natural-language descrip-
tion of defects could assist developers to categorize defects.
Based on these defect categories, developers can perform post-
mortem analysis and decide appropriate defect management
strategies, e.g., refactoring of some components that are often
affected by Mandelbugs.

III. OVERALL FRAMEWORK

Figure 3 shows our defect categorization framework. The
whole framework includes two phases: model building phase
and prediction phase. In the model building phase, our goal
is to build a classifier (i.e., statistical model) by leveraging

text mining techniques from historical bug reports with known
labels (i.e., configuration or not). In the prediction phase, this
classifier would be used to predict if an unknown bug report
would be a Bohrbug or Mandelbug.

Our framework first extracts features from a set of training
bug reports (i.e., bug reports with known status) (Step 1).
Features are various quantifiable characteristics of bug reports
that could potentially distinguish defects that are related to
Mandelbugs from those are related Bohrbugs. The goal of
feature extraction is to reduce the defects to some important,
quantitative aspects. In this paper, we use textual features from
the natural-language description of bug reports. Our framework
extracts the texts from various fields (e.g., description, and
summary fields) of bug reports. For each text, our framework
tokenizes them, removes stop words (e.g., I, you, he, the),
stems them (i.e., reduces them to their root forms, e.g.,
“configuration” and “configure” are reduced to “config”), and
represents them in the form of a “bag of words” [10].4.

Then, our framework applies our fuzzy set based feature
selection (USES) techniques to select a subset of relevant
textual features to further improve the prediction performance
(Step 2).5

After we select a subset of textual features, our framework
next constructs a classifier (i.e., statistical model) based on the
selected textual features of the training bug reports (Step 3).
A classifier is a statistical model which assigns labels (in our
case: Bohrbug or Mandelbug) to a data point (in our case: a
defect) based on its textual features. The classifier construction
phase would compare and contrast the features of bug reports
that are Bohrbugs bugs, and those of bug reports that are
Mandelbugs. Various classification algorithms can be used to
build the classifier, e.g., naive Bayes multinomial [7], naive

4Detailed information of the feature extraction is presented in Section IV.
5Detailed information of USES is presented in Section V.
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Fig. 3. Proposed Defect Categorization Framework.

Bayes [7], SVM [8], logistic regression [8], RBF network [9],
and decision tree [8].

In the prediction phase, the classifier is then used to predict
the categories of a defect with unknown label. For each of
such bug reports, our framework first preprocesses and extracts
textual features from it, and represents it by using the features
selected in the model building phase (Step 4). Next, these
features are input into the classifier in the classifier application
step (Step 5). This step would output the prediction result
which is one of the following labels: Bohrbug or Mandelbug
(Step 6).

IV. PRE-PROCESSING AND FEATURE EXTRACTION

In this section, we first present our text pre-processing in
Section IV-A. Then, we describe the textual feature extraction
in Section IV-B.

A. Text Pre-Processing

We pro-process the natural-description of defects in 3 steps:
tokenization, stop-word removal, and stemming.

1) Tokenization: Tokenization is the process that breaks
a stream of text up into words, phrases, symbols, or other
meaningful elements called tokens. We remove all numbers
and punctuation marks appearing in the reports as they often
have weak correlation with defect categories. We then extract
the remaining word tokens.

2) Stop-word Removal: Stop words are words that are used
often and carry little meaning to distinguish different categories
of defects. Examples of stop word include “I”, “you”, “he”,
“the”. We take a set of standard stop words from WVTool.6

These stop words are removed from the extracted word tokens.

3) Stemming: Stemming is the process to reduce inflected
(or sometimes derived) words to their stem, base or root form.
For example, the words “fishing”, “fisher”, and “fished” would
all be reduced to “fish”. We employ the well-known Porter
stemmer7 to reduce a word to its representative root form.

6Available from: http://sourceforge.net/projects/wvtool/
7http://tartarus.org/Xmartin/PorterStemmer/

B. Feature Extraction

A typical bug report contains many fields. Some fields
such as summary and description fields provide the natural-
language description of a bug. The summary field is a con-
densed representation of a bug report, and the description field
provides more detailed information. For example, Figures 1
and 2 present the summary and description fields of two bug
reports in AXIS. In this paper, we extract features from the
summary and description fields of bug reports.

We first perform text preprocessing strategies as described
in Section IV-A. Next, we extract three kinds of textual features
from these two bug report fields:

TEXTSum : We extract pre-processed word tokens from the
summary field of a bug report as features. The value of each
feature is the number of times the corresponding word token
appears in the bug report.

TEXTDesc : We extract pre-processed word tokens from the
description field of a bug report as features. The value of each
feature is the number of times the corresponding word token
appears in the bug report.

TEXTAll : We extract pre-processed word tokens from both
summary and description fields of a bug report as features. The
value of each feature is the number of times the corresponding
word token appears in the bug report.

By default, we use TEXTAll as the features to construct
a classifier, and we would also compare the performance of
using TEXTSum and TEXTDesc in Section VI.

V. FUZZY SET BASED FEATURE SELECTION METHOD

We use the processed word tokens as the features to
construct a classifier. In total, we have a large number of
word tokens. In machine learning literature, a feature can be
viewed as a dimension, and a data point (i.e., a defect) can
then be viewed as a point in a high-dimensional space. An
overly high number of dimensions can cause the curse-of-
dimensionality problem [8]. Aside from this, we notice for
some datasets (e.g., apache HTTPD, and AXIS), only a very
small minority of defects are Mandelbugs, i.e., class imbalance
problem exists [11].

To address the above problems, in this section, we propose
a new fuzzy set based feature selection method USES. We first
present the definition of fuzzy category-word affinity score in
Section V-A. Next, we present our feature selection method
USES in Section V-B.

A. Fuzzy Category-Word Affinity Score

We denote the category of the ith defects as ci, and
following vector space modeling [10], we represent the textual
description of the ith defect as a vector Defect i = 〈ti,1, ti,2, · ·
·, ti,v〉, where ti,j is 1 if the word token wj appears in the ith

defects and 0 otherwise, and v is the total number of unique
terms in the whole defect collection. Based on these notations,
we define fuzzy category-word affinity score as follows:

Definition 3: (Fuzzy Category-Word Affinity Score.)
Consider a historical defect collection D, and a set of cate-
gories C. For each category c ∈ C, and word w ∈ D, the fuzzy
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category-word affinity score of c and w, denoted as Aff (c,w),
is computed as follows:

Aff (c,w) =
nc,w

nc + nw − nc,w
(1)

where nc,w denotes the number of defects whose descrip-
tions contain word w and are of category c, nc denotes the
number of defects that are of category c, and nw denotes the
number of defects that contain word w.

In our paper, we have two categories, Bohrbug and Man-
delbug. We denote Bohrbug as B, and Mandelbug as M . Thus,
for each word tokens w ∈ D, we have two fuzzy category-
word affinity scores, Aff (B ,w), and Aff (M ,w). We define
the feature selection score of word w as follows:

Definition 4: (Feature Selection Score.) For each word
w ∈ D, its fuzzy Bohrbug-term affinity score and fuzzy
Mandel-term affinity score are denoted as Aff (B ,w), and
Aff (M ,w). The feature selection score of w, denoted by
Feature(w), is the difference between these two scores, i.e.,

Feature(w) = Aff(M,w)−Aff(B,w) (2)

Notice that the feature selection score for a word token w
could be a positive or a negative value. If a defects has many
words with large positive feature selection scores then there
is a high likelihood that it will be a Mandelbug. On the other
hand, if a defect has many words with large negative feature
selection scores, then there is a high likelihood that it is a
Bohrbug.

Table I presents an example of a dataset with 4 words and
2 categories (Bohrbug (B) and Mandelbug (M)). We want to
compute the fuzzy category-term affinity scores of word 1,
i.e., Aff (B ,Word 1 ), and Aff (M ,Word 1 ). We notice that
two defects (Defects 1 and 3) are Bohrbugs, i.e., nB = 2;
Also, Word 1 appears in two defects (Defects 1 and 3), i.e.,
nWord 1 = 2. Furthermore, defects 1 and 3 both have Word 1
and are Bohrbugs, i.e., nB,Word 1 = 2. Thus, the fuzzy affinity
score for Word1 and Bohrbug, denoted by Aff (B ,Word 1 ),
is

Aff (B,Word 1) =
2

2 + 2− 2
= 1

Similarly, the fuzzy affinity score for word 1 and Mandel-
bug, i.e., Aff (M ,Word 1 ), is

Aff (M,Word 1) =
0

2 + 0− 0
= 0

Finally, the feature selection score for Word 1 , i.e.,
Feature(Word 1), is:

Feature(Word 1 ) = Aff (M,Word 1)−Aff (B,Word 1) = −1

TABLE I. AN EXAMPLE OF A DATASET WITH 4 WORDS AND 2
CATEGORIES (BOHRBUG (B) AND MANDELBUG (M)). A VALUE IN A

CELL IS 1, IF THE CORRESPONDING WORD EXISTS IN THE DESCRIPTION

OF THE CORRESPONDING DEFECT, AND IT IS 0 OTHERWISE.

Defect ID Word 1 Word 2 Word 3 Word 4 Category
1 1 0 1 1 B
2 0 1 0 1 M
3 1 0 1 0 B
4 0 1 0 0 M

1: USES(D, p%, sp%, ITER)
2: Input:
3: D: Training bug report collection
4: p%: Percentage of features to be selected
5: sp%: Percentage of training bug reports for classifier building
6: ITER: Number of iterations
7: Output: selectedFeatures
8: selectedFeatures: Final selected features (i.e., words)
9: Method:

10: Let N = Total number of features (i.e., unique words) in D
11: Let the number of selected features l = N × p%;
12: Compute feature selection scores for each word in D;
13: candPos = l words with the largest positive feature selection scores from D;
14: candNeg = l words with the largest negative feature selection scores from D;
15: Merge candPos and candNeg into one set Merge.
16: Divide D into two subsets Dbuild and Dvalidate according to sp%;
17: Let bestFMeasure = 0;
18: Let iter = 0;
19: Let selectedFeatures = {};
20: while iter ≤ ITER do
21: Randomly select a subset of l words (Ttmp) from Merge;
22: Build a classifier from Dbuild based on the selected l words;
23: Evaluate the Mandelbug F-measure ftmp of the classifier using Dvalidate;
24: if ftmp > bestFMeasure then
25: bestFMeasure = ftmp;
26: selectedFeatures=Ttmp;
27: end if
28: iter = iter + 1;
29: end while
30: Return selectedFeatures;

Fig. 4. USES: fUzzy Set based fEature Selection Algorithm

B. USES

Since there are many features and feature selection scores
could be positive or negative, the selection of good features
for effective classification is a challenging problem. One naive
way is to select an equal number of features with the highest
positive and negative scores. However, we propose USES that
can perform better.

USES first selects l features (i.e., words) with highest
positive feature selection scores, and l features with highest
negative feature selection scores. In total, USES takes as
input 2l features. Then, it iterates many times. And in each
iteration, it randomly selects a subset of l features from the 2l
features, and a classifier is built on the l features. We divide
the training dataset into two subsets: one is used to select l
features, and another is used to evaluate the performance of
the selected l features. The classifier and the features with the
best performance are selected. We set the value of l to be
high enough (i.e., 20% of the total number of features) so that
a sufficient number of positive and negative word tokens are
included.

Figure 4 presents our proposed method. First, we compute
the number of features l as N × p%, where N is the total
number of features (i.e., unique words) in a training bug report
collection D and p is a parameter that decides the percentage
of the features that would be selected. Then, we compute the
feature selection scores for each word in D, and choose l words
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with the largest positive feature selection scores (candPos)
and l words with the largest negative feature selection scores
(candNeg), and merge these two sets (i.e., candPos and
candNeg) into one set Merge (Lines 13, 14, and 15). Next, we
divide the training set of bug reports D into two subsets: Dbuild

and Dvalidate. We put sp% of the training bug reports into
Dbuild and the remaining into Dvalidate. By default, we put
90% of the defects in D inside Dbuild, and the remaining 10%
of the defects inside Dvalidate. Then, we iterate the process
ITER times. By default, we set the number of iterations
as 100 (i.e., ITER=100). For each iteration, we randomly
select a subset of l words (denoted as Ttmp) from Merge
(Line 19). We train a classifier based on the selected features
using Dbuild, and investigate the classifier’s performance on
Dvalidate, to evaluate how good a set of features (i.e., Ttmp)
is. We record the Mandelbug F-measure that is achieved by
the classifier. F-measure is a common measure to evaluate how
good a classifier is. It is the harmonic mean of precision and
recall. Precision refers to the proportion of defects predicted
as Mandelbugs that are correctly predicted. Recall refers to
the proportion of Mandelbugs that are correctly identified. We
record the set Ttmp that gives us the highest F-measure.

VI. EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of our pro-
posed tool. The experimental environment is an Intel(R)
Core(TM) i5 3.20 GHz CPU, 4GB RAM desktop running
Windows 7 (32-bit). We first present our experiment set-
up, evaluation metrics, and 4 research questions in Sec-
tion VI-A, VI-B, and VI-C, respectively. We then present
our experiment results that answer the four research questions
(Sections VI-D, VI-E, VI-F, and VI-G).

A. Experiment Setup

We evaluate our proposed tool on 4 datasets from different
open source software projects: Linux, Mysql, Apache HTTPD,
and AXIS. These datasets were used by Cotroneo et al. in a
previous empirical study [6]. Cotroneo et al. have manually
analyzed hundreds of bug reports and classified each of them as
a Bohrbug or a Mandelbug. For the Mysql dataset, we remove
7 duplicated defects from the original dataset by Cotroneo
et al. Table II presents the statistics of the bug reports from
the 4 projects. The columns correspond to the project name
(Project), the number of bug reports collected (# Bugs), the
time period of the collected bug reports (Time), the number
of Mandelbugs (# M.), the number of Bohrbugs (# B.), and
the number of unique terms (# Term). We remove terms which
appear less than 5 times to reduce noise.

Stratified ten-fold cross validation [8] is used to evaluate
the performance of our automated tool. We randomly divide
the dataset into 10 folds. Of these 10 folds, 9 folds are use
to train a classifier, while the last one fold is used to evaluate
the performance of classifier. The whole process is iterated 10
times, and the average performance across the 10 iterations is
recorded. Moreover, the distribution of labels in the training
and test folds are the same as the original dataset to simulate
the actual usage of our tool. Stratified cross validation is a
standard evaluation setting, which is widely used in software
engineering studies, c.f., [12]–[17].

TABLE II. STATISTICS OF COLLECTED DATASETS.

Project #Bugs Time #M. #B. #Term
Linux 267 2003.07-2011.05 145 122 883

Mysql 202 2006.08-2011.02 78 124 515

HTTPD 141 2002.03-2007.10 25 116 376

AXIS 199 2001.07-2005.11 15 184 396

TABLE IV. CONFUSION MATRIX.

Classified as True Class
Mandelbug Bohrbug

Mandelbug TP FP

Bohrbug FN TN

We implement USES on top of Weka [18].8 By default, we
set the number of selected words as 20% of the total number
of words in the defects collections (i.e., p% = 20%). Also, we
use naive Bayes multinomial as the classifier after we leverage
USES to select words – we denote the combination of naive
Bayes multinomial and USES as USESB .

B. Evaluation Metrics

To evaluate the predictive performance of our proposed
tool, we create a confusion matrix to store prediction results.
Table IV presents an example of a confusion matrix. The rows
of the matrix correspond to predicted labels of defects. The
columns of the matrix correspond to correct labels of defects.
A cell in the matrix contains the number of bug reports of a
particular predicted label and a particular correct label.

For each defects, there would be fours possible outcomes:
a defect can be classified as a Mandelbug when it truly is
a Mandelbug (true positive, TP); it can be classified as a
Mandelbug when it is a Bohrbug (false positive, FP); it can be
classified as a Bohrbug when it is a Mandelbug (false negative,
FN); or it can be classified as a Bohrbug and it truly is a
Mandelbug (true negative, TN). By using the values stored in
the confusion matrix, in this paper, we calculate the accuracy,
precision, recall and F-measure scores for each label (i.e.,
Mandelbug and Bohrbug) to evaluate the performance of our
proposed tool.

Accuracy: the number of correctly classified defects (both
Mandelbugs and Bohrbugs) over the total number of bugs, i.e.,
Acc = TP+TN

TP+FP+TN+FN .

Mandelbug Precision: the proportion of defects that are
correctly labeled as Mandelbugs among those labeled as Man-
delbugs, i.e., P (C) = TP

TP+FP .

Mandelbug Recall: the proportion of Mandelbugs bugs that
are correctly labeled, i.e., R(C) = TP

TP+FN .

Bohrbug Precision: the proportion of bugs that are correctly
labeled as Bohrbugs among those labeled as Bohrbugs, i.e.,
P (NC) = TN

TN+FN .

Bohrbug Recall: the proportion of Bohrbugs that are correctly
labeled, i.e., R(NC) = TN

TN+FP .

F-measure: a summary measure that combines both precision
and recall – it evaluates if an increase in precision (recall)
outweighs a reduction in recall (precision). For Mandelbug

F-measure, it is F (C) = 2∗P (C)∗R(C)
P (C)+R(C) . And for Bohrbug F-

measure, it is F (NC) = 2∗P (NC)∗R(NC)
P (NC)+R(NC) .

8http://www.cs.waikato.ac.nz/ml/weka/
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TABLE III. MANDELBUG F-MEASURE, BOHRBUG F-MEASURE, AND ACCURACY FOR USESB , NAIVE BAYES MULTINOMIAL (NBM), NAIVE BAYES

(NB), SVM, LOGISTIC REGRESSION (LR), AND RBF NETWORK (RBF). THE LAST COLUMN SHOWS THE AVERAGE MANDELBUG F-MEASURE, BOHRBUG

F-MEASURE, AND ACCURACY SCORES ACROSS THE 4 DATASETS.

Evaluation Techniques Linux Mysql HTTPD Axis Average

Mandelbug F-measure

USESB 0.524 0.615 0.375 0.298 0.453
NBM 0.427 0.605 0.304 0.261 0.399
NB 0.427 0.538 0.393 0.273 0.408

SVM 0.695 0.196 0 0 0.223
LP 0.502 0.497 0.391 0.054 0.361

RBF 0.535 0.538 0.333 0.174 0.395

Bohrbug F-measure

USESB 0.587 0.758 0.872 0.906 0.781
NBM 0.599 0.762 0.864 0.903 0.782
NB 0.599 0.710 0.833 0.910 0.763

SVM 0.090 0.763 0.903 0.961 0.679
LP 0.502 0.693 0.881 0.903 0.745

RBF 0.528 0.741 0.863 0.949 0.770

Accuracy

USESB 55.8% 70.3% 78.7% 83.4% 72.1%
NBM 52.8% 70.3% 77.3% 82.9% 70.8%
NB 52.8% 64.4% 73.8% 83.9% 68.7%

SVM 54.3% 63.4% 82.3% 92.5% 73.1%
LP 50.2% 61.9% 80.1% 82.4% 68.7%

RBF 55.8% 60.9% 83.0% 92.0% 71.9%

Notice that precision and recall are both important metrics
for defect categorization since they measure quality of our tool
in two aspects. If the precision is low, then the developer would
not use the tool, due to a high number of false positives. If the
recall is low, developers would not use the tool also, since most
Mandelbugs (Bohrbugs) are not successfully predicted. There
is a trade off between precision and recall, and one can increase
precision by sacrificing recall (and vice versa) [8]. F-measure,
which is the harmonic mean of precision and recall, is often
used to judge whether an increase in precision outweighs a loss
in recall (and vice versa) [8]. In many past papers in software
engineering literature, e.g., [15], [19]–[21], F-measure is often
used as a summary measure. Moreover, since Mandelbugs
are more complex and require more time to be fixed [6],
Mandelbug F-measure is the most important evaluation metric.

C. Research Questions

We are interested to answer the following research ques-
tions:

RQ1 How effective is our proposed tool? How much improve-
ment could our proposed tool achieve over vanilla classifica-
tion techniques without any feature selection?

In our proposed tool, we first use USES to select features,
and then we build a classifier based on the selected features.
We would like to investigate whether our proposed tool could
achieve better performance over standard classification tech-
niques without any feature selection. Answer to this research
question would shed light to whether our proposed tool ad-
vances existing classification methods. To answer this research
question, we select 5 state-of-the-art classification techniques,
i.e., naive Bayes multinomial [7], naive Bayes [7], SVM [8],
logistic regression [8], and RBF network [9]. For SVM, we
use its libSVM implementation [22]. For the other techniques,
we use their implementations in Weka. We compare USESB

with these techniques.

RQ2 Can USES achieve a better performance over other
feature selection techniques such as information gain, gain
ratio, and one rule [8]?

In data mining literature, there are many feature selection
techniques. Information gain, gain ratio, and one rule based

approaches are popular feature selection techniques [8]. We
want to investigate whether USES could achieve a better
performance over information gain (IG), gain ratio (GR), and
one rule (OneR). We first select features using USES, IG, GR,
and OneR, and then for each resulting feature set, we create
a classifier. We compare the effectiveness of these classifiers
to demonstrate whether USES is better than the other feature
selection techniques.

RQ3 What are the impact of using various textual features
on the effectiveness of our proposed approach?

Based on the description in Section IV-B, we can extract
3 types of feature sets from bug reports, i.e., TextSum,
TextDesc, TextAll. We would like to investigate the effective-
ness of these 3 feature sets to categorize defects. To answer
this research question, we build 3 classifiers each using one of
these 3 feature sets, and evaluate the performance of these 3
classifiers.

RQ4 Do different numbers of selected features affect the
performance of our proposed tool?

By default, USES selects 20% of all textual features. We
investigate whether different numbers of selected features (i.e.,
words) would affect the performance of our proposed tool. To
answer this research question, we vary the number of selected
features from 5%, 10%, 15%, 20%, 25% to 30% of the total
number of features.

D. RQ1: Performance of Our Tool

Table III presents the Mandelbug F-measure, Bohrbug F-
measure, and accuracy for USESB compared with naive
Bayes multinomial, naive Bayes, SVM, logistic regression, and
RBF network. The Mandelbug F-measure, Bohrbug F-measure,
and accuracy for USESB vary from 0.298 – 0.615, 0.587
– 0.906, and 55.8% – 83.4%, respectively. Considering all
five other classification techniques, we notice that naive Bayes
multinomial achieves the best performance. Our proposed
USESB improves the Mandelbug F-measure of naive Bayes
multinomial by 22.7%, 1.7%, 23.4%, and 14.2% for Linux,
Mysql, Apache HTTPD, and Axis, respectively. Averaging
across the 4 datasets, the average improvement achieved by
USESB is 15.48%.

45



TABLE V. OUR PROPOSED TOOL USES WITH NAIVE BAYES MULTINOMIAL(NBM) VS. INFORMATION GAIN WITH NBM (IG).

Evaluation Techniques Linux Mysql HTTPD Axis Average.

Mandelbug F-measure
USESB 0.524 0.615 0.375 0.298 0.453

IG 0.486 0.532 0.308 0.286 0.403
Impro. 7.8% 15.6% 21.8% 4.2% 12.3%

Bohrbug F-measure
USESB 0.587 0.758 0.872 0.906 0.781

IG 0.557 0.699 0.843 0.916 0.754
Impro. 5.4% 8.4% 3.4% -1.1% 4.0%

Accuracy
USESB 55.8% 70.3% 78.7% 83.4% 72.1%

IG 52.4% 63.4% 74.5% 84.9% 68.8%
Impro. 6.4% 10.9% 5.7% -1.8% 5.3%

TABLE VI. OUR PROPOSED TOOL USES WITH NAIVE BAYES MULTINOMIAL(NBM) VS. GAIN RATIO WITH NBM (GR).

Evaluation Techniques Linux Mysql HTTPD Axis Average.

Mandelbug F-measure
USESB 0.524 0.615 0.375 0.298 0.453

GR 0.486 0.532 0.302 0.286 0.402
Impro. 7.8% 15.6% 24.2% 4.2% 12.9%

Bohrbug F-measure
USESB 0.587 0.758 0.872 0.906 0.781

GR 0.557 0.699 0.838 0.916 0.753
Impro. 5.4% 8.4% 4.1% -1.1% 4.2%

Accuracy
USESB 55.8% 70.3% 78.7% 83.4% 72.1%

GR 52.4% 63.4% 74.5% 84.9% 68.8%
Impro. 6.4% 10.9% 5.7% -1.8% 5.3%

We notice that for SVM, its Mandelbug F-measure for
Linux is quite high, i.e., 0.695. However, considering its
Bohrbug F-measure for Linux, we find that SVM predicts
nearly every defect as Mandelbug, since in Linux, Mandelbugs
are the majority. For Apache HTTPD and Axis, SVM also
nearly predicts every defect as Bohrbug, since Bohrbugs are
the majority. Thus, although the average accuracy of SVM is
higher than USESB , it does not mean that SVM performs
better.

E. RQ2: USES vs. IG, GR, and OneR

Table V presents the experiment results of our USESB

compared to information gain with naive Bayes multinomial
(IG). We notice that the differences in F-measures and accuracy
are substantial. USESB improves the average Mandelbug F-
measure, Bohrbug F-measure, and accuracy of IG by 12.3%,
4.0%, and 5.3%, respectively. Table VI presents the experiment
results of our USESB compared to gain ratio with naive
Bayes multinomial (GR). We notice that the differences in
F-measures and accuracy are substantial. On average across
the 4 datasets, USESB improves the average Mandelbug F-
measure, Bohrbug F-measure, and accuracy of GR by 12.9%,
4.2%, and 5.3%, respectively. Table VII presents the experi-
ment results of our USESB compared to one rule with naive
Bayes multinomial (OneR). We notice that the differences in
F-measures and accuracy are substantial. On average across
the 4 datasets, USESB improves the average Mandelbug
F-measure, Bohrbug F-measure, and accuracy of OneR by
68.3%, 4.2%, and 4.6%, respectively.

F. RQ3: Effect of Various Textual Features

Table VIII presents the experiment results of using various
textual features, i.e., TextAll, TextDesc, and TextSum. We
notice that TextAll achieves the best performance as compared
to TextDesc, and TextSum.

G. RQ4: Effect of Varying the Number of Selected Features

Figure 5 presents the Mandelbug F-measure of USESB

for various numbers of selected features (i.e., words) for

Fig. 5. Mandelbug F-measures for Different Numbers of Selected Features
(5% to 30% of the Number of Distinct Words in the Training Data).

Linux, Mysql, Apache HTTPD, and Axis. Notice that for small
numbers of features (e.g., 5%, 10%, and 15% of the number of
distinct words), the Mandelbug F-measure scores are unstable.
For example, for Apache HTTPD, its Mandelbug F-measure
is 0.4 when 5% of the number of distinct words are selected,
it becomes 0.49 when 10% of the number of distinct words
are selected, and it becomes 0.353 when 15% of the number
of distinct words are selected. For a larger number of features
(e.g., 20%, 25%, and 30% of the number of distinct words),
the Mandelbug F-measure scores are more stable. For example,
for Axis, its Mandelbug F-measure is 0.298 when 20% of
the number of distinct words are selected, it becomes 0.298
when 25% of the number of distinct words are selected, and
it becomes 0.273 when 30% of the number of distinct words
are selected.

VII. THREATS TO VALIDITY

Threats to internal validity relate to errors in our experi-
ments. We use the same datasets provide by Cotroneo et al. [6].
We have double checked our experiments and removed the
duplicated defects from the datasets, still there could be errors
that we do not notice.
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TABLE VII. OUR PROPOSED TOOL USES WITH NAIVE BAYES MULTINOMIAL(NBM) VS. ONE RULE WITH NBM (ONER).

Evaluation Techniques Linux Mysql HTTPD Axis Average.

Mandelbug F-measure
USESB 0.524 0.615 0.375 0.298 0.453

OneR 0.498 0.547 0.302 0.293 0.091
Impro. 5.2% 12.4% 28.0% 227.5% 68.3%

Bohrbug F-measure
USESB 0.587 0.758 0.872 0.906 0.781

OneR 0.548 0.7 0.88 0.887 0.754
Impro. 7.1% 8.3% -0.9% 2.1% 4.2%

Accuracy
USESB 55.8% 70.3% 78.7% 83.4% 72.1%

OneR 52.4% 63.9% 79.4% 80.0% 68.9%
Impro. 6.4% 10.1% -0.9% 4.4% 4.6%

TABLE VIII. VARIOUS TEXT FEATURES USED FOR CLASSIFICATION.

Evaluation Features Linux Mysql HTTPD Axis Average.

Mandelbug F-measure
TextAll 0.524 0.615 0.375 0.298 0.453

TextDesc 0.478 0.595 0.383 0.292 0.437

TextSum 0.690 0.383 0.200 0.00 0.318

Bohrbug F-measure
TextAll 0.587 0.758 0.872 0.906 0.781

TextDesc 0.551 0.740 0.877 0.903 0.768

TextSum 0.313 0.754 0.905 0.961 0.733

Accuracy
TextAll 55.8% 70.3% 78.7% 83.4% 72.1%

TextDesc 51.7% 68.3% 79.4% 82.9% 70.6%

TextSum 57.3% 64.9% 83.0% 92.5% 74.4%

Threats to external validity relate to the generalizability of
our results. We have analyzed 809 bug reports from 4 open
source software projects. In the future, we plan to reduce this
threat further by analyzing more bug reports from open source
and commercial software projects .

Threats to construct validity refer to the suitability of our
evaluation metrics. We use Mandelbug F-measure as the main
evaluation metric. F-measure has also been used by past
software engineering studies to evaluate the effectiveness of
a prediction technique [15], [19]–[21]. Thus, we believe there
is little threat to construct validity.

VIII. RELATED WORK

In this section, we discuss some related works on character-
izing or predicting the types of bugs in Section VIII-A. Next,
we briefly review some works on text mining for software
engineering in Section VIII-B.

A. Characterization and Prediction of Bugs

There have been a number of studies on characterizing
or predicting the types of bugs [6], [23]–[27]. Gegick et al.
propose the usage of text mining techniques to identify whether
a bug is a security bug or not [23]. Zaman et al. perform
an empirical study on security bugs and performance bugs
in Firefox [25]. They find security bugs need more time to
be fixed, while performance bugs are not that different from
other bugs, in terms of bug fix time, but more files need to be
changed to fix them. Arshad et al. extract configuration bugs
from GlassFish and JBoss, and they characterize configuration
bugs from several dimensions, i.e., problem-type, problem-
time, problem-manifestation, and problem-culprit [24]. Based
on their findings, they also develop a tool named ConfGauge
which injects parameter-based configuration issues into soft-
ware systems. Cotroneo et al. perform an empirical study on
Borhbug and Mandelbug in open-source software projects, and
they conclude that Mandelbugs need longer time to fix, and re-
quire specific strategies to be dealt with [6]. Xia et al. perform
an empirical study on bugs in software build systems such as
Ant, Maven, CMake and QMake, and they find that 21.35%

of the build system bugs are related to external interface
problems [26]. Thung et al. propose a method to automatically
categorize bug reports into 3 families: control and data flow,
structural, and non-functional [27]. Xia et al. propose the usage
of data mining and feature selection techniques to identify
configuration bugs [28]. Our work complements the above
studies; we classify a bug as a Bohrbug or a Mandelbug.

B. Text Mining for Software Engineering

There have been a number of studies on text mining
for software engineering [20], [29]–[33]. The survey here is
by no means complete. Sun et al. propose a text mining
technique and extend BM25F to accurately detect duplicated
bug reports [29], [30]. Later, Nguyen et al. combine topic
model and BM25F to achieve a better performance in detecting
duplicated bug reports [31]. Wu et al. propose Relink which
leverages information retrieval techniques to recover links
between bugs and their corresponding changes [20]. Marcus
and Maletic use Latent Semantic Indexing (LSI) to recover
traceability links between documentation to source code [32].
Zhou et al. propose an approach that takes in a bug report
and return source code files that are likely to be relevant to
the input bug report [34]. Haiduc et al. use automated text
summarization to produce succinct and informative text to
comprehend software code [33]

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose a text mining solution which
categorizes defects into fault trigger categories by analyzing
the natural-language description of bug reports. Considering
Mandelbugs are more complex, and need more time to fix, we
propose a novel fuzzy set based feature selection algorithm
named USES, which selects the features (i.e., terms) which
have high ability to distinguish Mandelbugs from Bohrbugs.
USES first caches a set of terms based on their fuzzy affinity
scores to Bohrbug or Mandelbug. Next, it iterates many times,
and in each iteration, it selects a subset of terms, builds a
classifier on these terms, and evaluates it using a subset of
a training data. At the end of the iterations, USES selects
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the classifier and the terms which could achieve the best
Mandelbug F-measure scores on thetraining data. We evaluate
our solution on 4 datasets including Linux, Mysql, Apache
HTTPD, and AXIS containing a total of 809 bug reports. We
show that USES with naive Bayes multinomial achieves the
best performance over many baseline approaches. On average
across the 4 projects, USES improves Mandelbug F-measure
scores of information gain with naive Bayes multinomial,
which is the best performing baseline, by 12.3%.

In the future, we plan to evaluate our proposed tool with
more defects from more software projects, and develop a better
technique which could further improve the performance of
defect categorization based on fault triggering conditions. We
also plan to build a model leveraging transfer learning [35] to
predict Mandelbugs by using data from other projects.
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