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Abstract—We develop a new class of event detection algorithms
in Wireless Sensor Networks where the sensors are randomly de-
ployed spatially. We formulate the detection problem as a binary
hypothesis testing problem and design the optimal decision rules
for two scenarios, namely the Poisson Point Process and Binomial
Point Process random deployments. To calculate the intractable
marginal likelihood density, we develop three types of series ex-
pansion methods which are based on an Askey-orthogonal polyno-
mials. In addition, we develop a novel framework to provide guid-
ance on which series expansion is most suitable (i.e., most accurate)
to use for different system parameters. ExtensiveMonte Carlo sim-
ulations are carried out to illustrate the benefits of this framework
as well as the quality of the series expansion methods, and the im-
pacts that different parameters have on detection performance via
the Receiver Operating Curves (ROC).
Index Terms—Binomial point process, event detection, Poisson

point process, series expansions, wireless sensor networks.

I. INTRODUCTION

W IRELESS Sensor Networks (WSNs) have attracted
considerable attention due to the large number of

applications, such as environmental monitoring, weather fore-
casts [1], [2], surveillance, health care, and home automation
[2], [3]. WSN consists of a set of spatially distributed sensors
which monitor a spatial physical phenomenon containing some
desired attributes (e.g., pressure, temperature, concentrations
of substance, sound intensity, radiation levels, pollution con-
centrations etc.), and regularly communicate their observations
to a Gateway (GW) [4]–[6]. The GW collects these observa-
tions and fuses them in order to perform various tasks, based
on which effective actions can be taken [3]. The tasks GW
may perform include event detection [7], [8], field reconstruc-
tion [9], [10], outlier detection [11], [12], localization [13],
[14] and many more. The detection problem in WSN is to
distinguish between two hypothesis, namely, the absence (Null
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Hypothesis), or presence (Alternative Hypothesis) of a certain
event [15]–[17]. The ability of a WSN to make such decisions
is crucial for various applications, for example, the detection
of the presence or absence of a target in a surveillance system,
the detection of chemical, biological or nuclear plumes and
many more [18]–[20]. It is therefore imperative for the WSN
to be accurate in detecting the event (high detection rate)
while maintaining as low as possible false detection (low false
alarm).
Previous works on event detection have concentrated on

cases where the sensors deployment (i.e., the locations of
the sensors) is deterministic and known to the GW ([3],
[21]–[26] and references within). For example, in [25] the
problem of distributed detection was considered, where the
sensors transmit their local decisions over perfectly known
wireless channels. In [26] the problem of distributed event
detection under Byzantine attack was considered. Theoretical
performance analysis was derived in [23] for detection fusion
under conditionally dependent and independent local decisions.
Distributed detection in WSNs over fading channels with
multiple receive antennas at the GW was considered in [24].
In contrast, the problem of event detection where the sensors
are randomly deployed in the field is largely unexplored
[27]–[29]. This problem is of great practical interest because
in many cases the locations of the sensors are unknown to the
GW. Examples include volcanic activity detection [30]–[33]
and nuclear facility monitoring [34]–[36]. In both cases, it may
be impossible or very costly to place the sensors around the
source. Instead, sensors could be dropped or deployed from an
airplane in a random manner.
In the wireless communication literature, there has been great

interest in random deployments of wireless networks, see for ex-
ample [37], [38]. These works make use of tools from stochastic
geometry to calculate parameters of interest, such as capacity,
Signal-to-Noise-Ratio (SNR) of such systems and mainly con-
sider homogeneous deployments for mathematical tractability.
In practice however, it is very unlikely that the sensors would be
distributed in space in a spatially homogenous way, but instead
a non-homogeneous behavior is more likely to occur.
To address these aspects of random inhomogeneous spatial

deployment of sensor networks, new models and algorithms for
event detection need to be developed. In addition, it is important
for network designers to understand how different parameters
would affect the performance of the WSN before deployment,
(i.e., number of sensors, region of deployment, level of inhomo-
geneity of the deployment etc.) in order to obtain the optimal
detection performance.
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At the heart of distance based algorithms in WSN under
random spatial deployment lies the understanding of the dis-
tance distribution. Such quantities have been derived under
spatial deployment such as Poisson Point Process (PPP) and
Binomial Point Process (BPP) [39]–[42]. In [39], sensors are
uniformly randomly distributed following a BPP. The authors
analyzed various properties of such networks including the
distance distribution, moments of distance etc. In [40], the
authors considered a more general distribution, namely the
PPP and provided analysis of the distance distributions for
such networks. In [41] the authors discussed the deployment
of cognitive cellular wireless networks. In [42] the authors
considered distance distributions on mobile wireless networks.
It is important to note that these papers have only tackled
homogeneous deployments and the practical cases of non-ho-
mogeneous deployments have not been addressed.
In this paper, we develop event detection algorithms in WSN

for the case where the sensors are randomly distributed in space
and their locations are unknown to the GW. When the target
(event) is present/active, it emits energy (acoustic or electro-
magnetic) which is measured by each of the sensors. All the
measurements from the sensors are then aggregated to the GW
which decides whether the target is present or absent. We as-
sume an energy decay model in which the amount of energy
each sensor measures falls off with distance obeying an inverse
power-law where the exponent is known as the path loss ex-
ponent [38]. In contrast to previous works which assumed that
the locations of the sensors are known to the GW [15], [24],
[43], we assume a random spatial deployment. To obtain the
optimal decision rule, the likelihood ratio test (LRT) for the
two hypotheses (event present/ absent) needs to be evaluated.
This involves the calculation of the marginal likelihood density
under each hypothesis. While deriving the marginal likelihood
under the null hypothesis is trivial, the derivation of the mar-
ginal likelihood under the alternative hypothesis is not readily
obtained in closed-form, since it involves a multi-variate convo-
lution which cannot be solved exactly. As such, we adopt a prin-
cipled approach to approximate the marginal likelihood under
the alternative hypothesis. To do so, we exploit stochastic ge-
ometry techniques to model the placement of the sensors [39].
We then approximate the intractable distribution density via se-
ries expansions techniques which are based on an Askey-or-
thogonal polynomial expansion. The three series expansions we
develop are the Gram-Charlier, Gamma-Laguerre and Beta-Ja-
cobi series expansions. Since these expansions do not ensure
positivity of the density at all points, it is important to char-
acterise the system parameters for which the density approx-
imation will remain positive. This characterisation can be car-
ried out by finding the appropriate regions in the Skew-Kurtosis
plane (S-K plane) which generate positive support [44], [45].
This characterisation is important and should be used as a guide
to choose the appropriate series expansion. We will illustrate
the implications of not choosing the correct series expansion
via simulations. Importantly, the algorithms we develop only
require deriving the first four cumulants and moments to obtain
good detection performance and are therefore of low computa-
tional complexity.
We summarize our four key contributions as follows.

1) We extend the distance distribution results of [39], [40] for
Poisson Point Process and Binomial Point Process to the
inhomogeneous deployment case (presented in Theorem
1). These results are required in order to develop the op-
timal detection algorithm we derive.

2) We develop three different types of Askey-orthogonal
polynomial expansion methods to approximate the mar-
ginal likelihood density (presented in Section IV). The
first is based on Hermite polynomials and is known as the
Gram-Charlier series expansion; the second is based on
Laguerre polynomials and is known as the Gamma-La-
guerre series expansion; the third expansion that we derive
for the first time is the Beta-Jacobi series expansion and is
based on Jacobi polynomials (presented in Theorem 2 and
Theorem 3).

3) We develop a novel analysis tool to characterise the condi-
tions (Skew-Kurtosis region) at which each expansion has
a positive support (presented in Section IV). The new tool
is of great importance as it provides a guidance as to which
series expansion to use under different type of system pa-
rameters, such as noise distribution, path-loss exponent pa-
rameter, SNR value etc.

4) We show that our proposed Beta-Jacobi series expansion
provides better detection performance than the standard
Gram-Charlier Gamma-Laguerre series expansions for dif-
ferent practical scenarios.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we present the model assumptions. We begin
with a formal definition of the Finite Binomial Point Process
and Infinite Poisson Point Process followed by system model
assumptions. These processes are special cases of spatial point
process. In general a spatial point process is a random pattern
of points, in our case in 2-dimensional space.
Definition 1 (Finite Binomial Point Process (FBPP) [46],

[47]): A Finite Binomial Point Process is defined by con-
sidering a fixed number of points at random locations in
a bounded region . Define by the i.i.d.
random locations with the intensity of the number of points in
a small region around any location denoted as . This
produces a probability density of each given by

if ,
otherwise,

where denotes the area of . Each random point is
uniformly distributed in so that for a bounded set,
has the distribution

We consider a general case involving an inhomogeneous ver-
sion of the finite domain spatial BPP (inhomogeneous FBPP).
The distribution of the points will have a density given
by the decaying power law, relative to the center of which is
specified to be a disc in our applications. Therefore it will have
a form given according to
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where is the indicator function defined as:

if
otherwise,

with reference to the center of .
The second point process is an Infinite Poisson Point Process

(IPPP) defined on an infinite domain according to Definition 2.
Definition 2 (Infinite Poisson Point Process (IPPP) [46]):

Consider a locally compact metric space and mea-
sure on which is finite on every compact set and contains
no atoms. Then the spatial PPP on with intensity measure
is a point process on such that
• for every compact set , the count is dis-
tributed according to a Poisson distribution with
mean; and

• if are disjoint compact sets, then
are independent.

In the examples considered in this paper we will utilise one
of two possibilities:
• Homogeneous IPPP (HIPPP), when is constant.
• Non-homogeneous IPPP (NIPPP), when is not constant.
We consider a power law with .
Although we claim that the density is of the power law
form, the scheme can handle other density distributions as
long as the in Appendix A, proof of theorem 1 can be
solved in analytic form in analytic form and that all the
moments can be tractable.

The difference between the FBPP and the IPPP is that the
number of points within set , is a known constant under
FBPP, and is a random unknown under IPPP. For the PPP de-
ployment, there is no need to assume that the source is in the
canter of the region. For the BPP, this assumption is required.
In any case, for practical scenarios, it is reasonable to assume
that the deployment of the sensors would be around the source,
therefore, having the source at the centre of the region.

A. Wireless Sensor Network Operation Model
We now present the system model for the WSN.
1) The source is present ( ) or absent ( ). Under , the

source transmits at a constant power , and under , the
source does not transmit ( ).

2) The location of the source (if present) is assumed to be
known at . We assume it is located at the
center of circle of radius .

3) Consider a WSN consisting of sensors with locations fol-
lowing either a FBPP deployment (Definition 1) or an IPPP
deployment (Definition 2) in a 2 dimensional region.
a) For the FBPP deployment, sensors are deployed

in a circle with radius .
b) For the IPPP deployment, an unknown random

number of sensors are deployed in a circle with radius
. Note that for the case of IPPP, the number of

points is not fixed.
The spatial density of the sensors is given by

, where denotes the norm of .
4) The unknown random location of the nearest sensor

to the source ( ) is
.

5) The amount of energy the -th sensor measures is inversely
proportional to the Euclidean distance between the source
and the sensor and is given by . The random
variable represents the random distance between the
-th nearest sensor and the source. This distance is de-

fined as the minimum radius of the ball with center ,
that contains at least points in the ball, i.e.,

. is the ball
with radius and center at .

6) We assume that a power control mechanism between the
nodes and the GW is implemented. Since the sensors are
static, this power control is constant over time, similar to
the deployment in [30]. Once this has been achieved, the
sensors start to collect and transmit their observations to
the GW. The observed signal at the GW in the -th time slot

is a linear combination of all the signals
given by:

where is the i.i.d. additive Gaussian
noise . The parameter is the path-loss coeffi-
cient.We note that ourmodel is general enough to cover the
cases where sensors may be faulty or outside the commu-
nication range of GW by considering the number of active
nodes as a random variable.

We proceed by presenting the optimal decision rule for
the event detection. We then derive the various components
required in order to evaluate the optimal decision rule.

B. Optimal Event Detection Decision Rule
The optimal decision rule is a threshold test based on the

likelihood ratio [48]. We consider a frame-by-frame detection,
where the length of each frame is . The decision rule is then
given by:

(1)

where the threshold can be set to assure a fixed system
false-alarm rate under the Neyman-Pearson approach or can be
chosen to minimize the overall probability of detection error
under the Bayesian approach [49]. We decompose the full
marginals under each hypothesis, , :

Next, we can write the -th observation recursively as:

and .
Under we have that .
This decomposition is useful as it allows us to work on a

lower dimensional space, resulting in efficiency gains for the
algorithm we develop and requiring no memory storage.
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III. EVENT DETECTION ALGORITHM UNDER RANDOM POINT
PROCESS SENSOR DEPLOYMENT

The optimal decision rule in (1) involves calculating the mar-
ginal likelihood under each hypothesis, ,

. The marginal likelihood under follows a Normal dis-
tribution. The marginal likelihood under the alternative hypoth-
esis, , is not attainable in closed form because it in-
volves solving the ( )-fold convolution as we will show in
this section (see (2)). We will therefore develop a novel approxi-
mation of the marginal likelihood under the alternative hypoth-
esis, based on an Askey-orthogonal polynomial expansion. In
particular, we will derive the Gram-Charlier, Gamma-Laguerre
and Beta-Jacobi series expansions.
We begin by extending the earlier work of [39] to obtain

the distribution of the distance between the -th sensor and the
source location, denoted by for both BPP and
IPPP deployments.
Theorem 1: The density of the Euclidean distance between

the -th sensor and the source, , is given by:
1) BPP deployment:

2) IPPP deployment:

where is the distribu-
tion and is the Gamma function. For both
cases, the support of is .

Proof: See Appendix A.
Corollary 1: When and , the non-

homogenous BPP converges to an IPPP. Since ,
then . Also, . We
have . The density is given by:

Next, based on the result in Theorem 1, we derive the den-
sity distribution of each of the elements in the observation under
the alternative hypothesis . This involves the non-linear trans-
formation of the random distance, namely ,
where
Lemma 1: The density

is given by:
1) BPP deployment:

2) IPPP deployment:

For both cases, the support of is .
Proof: See Appendix B.

Now that we have derived the density and distribution of each
of the elements in , we need to derive the density of the term

. We express this random sum of as an -fold
convolution of , given by

(2)

where represents the convolution operation. Each of these con-
volution integrals is intractable and cannot be solved analyti-
cally in closed form. To approximate the marginal likelihood
we will utilise a series expansion approach presented in the next
section.

IV. PROBABILITY DENSITY APPROXIMATION VIA SERIES
EXPANSION METHODS

In order to evaluate the marginal likelihood in (2), we de-
rive novel approximation for the marginal likelihood. We de-
velop three different series expansion methods for representing
the marginal likelihood using orthogonal basis functions [44],
[45]. We will show how these expansions are applicable under
different scenarios. The series expansions we utilise are based
on a kernel density multiplied by polynomials, known as Askey
polynomials [50]. Typical Kernel densities include Gaussian
density basis, Gamma density basis and Beta density basis. The
respective Askey polynomials [50] are Hermite polynomials,
Laguerre polynomials and Jacobi polynomials. These series ex-
pansions for the scalar case can be generically expressed as
follows:

(3)
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where is the kernel, is the -th weight and is the
-th order basis function. All of these series expansion methods
use the basic properties of orthogonality between density func-
tions and polynomials. This property guarantees the integration
of density to be equal to one [44], [45]. Each of these series
expansion has different properties and different supports. An
important aspect of these expansions (due to limited number
of terms, specifically four terms will guarantee good perfor-
mance) is that they do not ensure positivity of the density at
all points (for example, it can be negative for particular choices
of Skew and Kurtosis). It is therefore important to characterize
these values that produce the “envelope” for the density ap-
proximation in which it will remain positive. This characteri-
zation can be carried out by finding the appropriate regions in
the Skew-Kurtosis plane (S-K plane) which generate positive
support [44], [45].
We will derive three series expansion methods, which will be

used for different practical scenarios (e.g., different system pa-
rameters). The first two are the Gram-Charlier and Gamma-La-
guerre series expansions. We then develop a new series expan-
sion which we term the Beta-Jacobi series expansion.

A. Gram-Charlier Series Expansion

The Gram-Charlier series expansion utilizes a Gaussian
kernel, , and Hermite polynomials, , as basis func-
tions. These polynomials are defined in terms of the derivatives
of the normal density, as follows:

The Gram-Charlier series expansion is given by:

where is the normal density and is the -th cumulant of
. If we include only the first two correction terms to the normal

distribution, we obtain the Gram-Charlier A series presented
next.
Lemma 2 (Gram-Charlier a Series Expansion): The fourth

order approximation of a probability distribution, , via
the Gram-Charlier A series is given by

(4)

where and are the
Hermite polynomials, and are the first, second,
third and fourth cumulants of .
As mentioned before, it is important to characterise the re-

gions in the S-K plane which yield positive support of the den-
sity. This is presented in the following Lemma.

Lemma 3 (Positive Density Conditions [44]) : The Gram-
Charlier A series expansion yields positive values for the density

only if:

where , denotes the skewness and kurtosis
of random variable , , 2, 3,4 refers to
the -th orders of polynomials. Also, and

B. Gamma-Laguerre Series Expansion

The Gamma-Laguerre series expansion approximates a prob-
ability distribution, , by utilizing the orthogonality be-
tween the Gamma density kernel and the Laguerre polynomials
in order to obtain an efficient series expansion [45]. In contrast
to the Gram-Charlier series expansion where the Hermite poly-
nomials have support on the entire real line, the Laguerre poly-
nomials only have support on the positive real line .
Instead of directly working with , we first rescale it to a R.V.
by , where and set . Denoting the

density of as , we express as follows:

where the kernel is the Gamma density, i.e.,

, with and , and the orthonormal
polynomial basis (with respect to this kernel) is given by the
Laguerre polynomials (in contrast to Hermite polynomials in
the Gaussian case of the Gram-Charlier expansion), defined as

Next we characterise the S-K region of the Gamma-Laguerre
series expansion in which it yields positive support. These re-
sults are based on those derived in [45].
Lemma 4 (Positive Density Conditions): The Gamma-La-

guerre series expansion yields positive values for the density
if:

where , refers to the skewness and kurtosis of the
random variable , , , , , and are defined
in [45].

C. Beta-Jacobi Series Expansion

In this section we develop a series expansion that is based
on the Beta kernel. This new expansion is relevant for cases
where has a bounded support . To achieve this, we con-
struct the series based on a Beta kernel (instead of Gamma or
Normal kernels as before) and the Jacobi polynomials. It is im-
portant to note that the Jacobi polynomials are only orthogonal
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on . Hence, we need to transform so that it also has
support This is achieved via the transformation

We now present our novel Beta-Jacobi density series expansion,
see discussions in [51].
Theorem 2 (Beta-Jacobi Density Series Expansion) : The

Beta-Jacobi series expansion is given by:

where the coefficients, , and the Jacobi polynomials,
, are given by:

Proof: See Appendix C.
The distribution of is obtained from the distribution of

via the transformation

(5)

where is given in Theorem 2. The values of need
to be chosen in order to find a good approximation of . We
find approximate values of through K-S curve as mentioned
below. Next we find the Skew-Kurtosis conditions to guarantee
positive density:
Theorem 3 (Positive Density Conditions): The Beta-Jacobi

series expansion yields positive values for the density if:

where , refers to the skewness and kurtosis of the
random variable , are defined in
Appendix D.

Proof: See Appendix D
Utilizing these three series expansions involves calculating

the first four cumulants and moments of the model under IBPP
and IPPP, which will be presented in the next section.

V. CALCULATION OF THE MOMENTS

To obtain the cumulants we need to calculate the Moment
Generating Function (MGF) of , given by

Calculating the MGF of each of the elements, , as presented
in Lemma 1 for BPP and IPPP, involves the following:
1) BPP deployment:

2) IPPP deployment:

Solving both integrals directly is difficult. Instead, an equivalent
solution can be obtained by calculating the -th moment for
and then deriving the MGF based on the moments.
Theorem 4: The -th moment of is given by:
1) BPP deployment:

otherwise

2) IPPP deployment:

otherwise.
Proof: See Appendix E

Based on the moments, we can calculate the cumulants and
moments.
Lemma 5: The first four cumulants of , , ,

2, 3, 4 are given by:

The Moments can be expressed as polynomials of cumulants:
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Proof: See Appendix F.
Now that we have derived the four cumulants and moments,

we use the series expansion methods in Section IV to ap-
proximate and derive the LRT in (1). Finally,
the Event Detection algorithm under FBPP is presented in
Algorithm 1.

Algorithm 1: Event Detection in Sensor Networks with
Random Deployment

Input: , , , , , ,
Output: Binary decision ( , )
1) Calculate the first four moments as per Theorem 4.
2) Calculate and according the lemma 5.
3) Perform S-K region analysis to assess the

appropriateness of each of the series expansions
according to Lemma 3, Lemma 4 and Theorem 3.

4) Choose the series expansion for which the S-K point
is inside the S-K region.

5) Evaluate the series expansion chosen in Section IV to
find according to (3).

6) Calculate via (1) and compare to the threshold
.

VI. SIMULATION RESULTS

We present the performance of the proposed algorithms via
Monte Carlo simulations, where we first present the moment
calculation accuracy, then the positivity regions of the estimated
density and finally the detection performance via Receiver Op-
erating Characteristics (ROC) curves. The simulations setting is
as follows: the results are obtained from 50,000 realizations for
a given parameter set of . The additive noise
is assumed to be i.i.d. Gaussian distributed at each sensor.

A. Moments Calculation

In Figs. 1–2, we present comparison of theoretical moments
(Theorem 4 ) andMonte Carlo simulations for BPP and PPP. For
both cases we consider both homogeneous and non-homoge-
nous deployments. For both BPP and PPP, the results show good
match with theMonte Carlo simulations as well as increased ac-
curacy as the number of sensors increases.

B. Comparison of Critical Region

When the sensors are located close to the center of the re-
gion, the empirical sample density and estimated density do not
agree. This is because those points close to the center may vio-
late the probability density because they will result in an inac-
curate sample mean. Therefore, we remove a small hole around
the center. We use to represent the radius of the hole, which
we call critical region. Fig. 3 shows the effect of removing those
points for different critical region sizes. In particular, we vary

. We also compare the accuracy of series ex-
pansion methods with respect to different . In Fig. 3, we clearly
show the effect that has on the approximation for all three se-
ries expansion methods. In Fig. 3, we show the probability den-
sity function (PDF) for different values of . From extensive

Fig. 1. Comparison of the theoretical results of the first four moments per
Theorem 4 and Monte Carlo simulations under homogeneous BPP (left panel)
and non-homogeneous BPP (right panel).

Fig. 2. Comparison of the theoretical results of the first four moments per
Theorem 4 and Monte Carlo simulations under homogeneous PPP (left panel)
and non-homogeneous PPP (right panel).

numerical experiments, we have found that the choice
yields accurate approximations for a range of moments and will
be used in all simulations.
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TABLE I
SIMULATION PARAMETERS

Fig. 3. Effect of critical region on marginal likelihood estimation as a function
of the critical region.

C. Marginal Likelihood Estimation via Series Expansion and
S-K Region
As discussed in Section IV, we use the Skew-Kurtosis curve

to characterise regions where each of the series expansionwould
yield a positive PDF, given set of system parameters. It is there-
fore a useful tool which helps choose which series expansion to
use. In this section, we present several examples to show how
this will affect the approximation under each series expansion.
The different sets of parameters are presented in Table I. We
consider “clean signal” (i.e., ) and “noisy signal” (i.e.,

), see Table I.
1) Gram-Charlier Series Expansion: In Fig. 4 we plot the

S-K curve and PDF Gram-Charlier series expansion estima-
tion for three different sets of system parameters. The three
sets of system parameters generate three different Skew-Kur-
tosis values, represented by the red dot in each of the figures.
In the left figure, the S-K point falls at the region that satisfies
the conditions in Lemma 3, while the other two do not satisfy
the condition, which results in poor estimation of the PDF. This
illustration shows the ability of the Gram-Charlier series expan-
sion to accurately approximate the true distribution, depending
on system parameters. It is clearly shown that for noisy signal,
the approximation is good, but for clean signal, the approxima-
tion has a negative PDF approximation.
2) Gamma-Laguerre Series Expansion: In Fig. 5 we plot the

S-K curve and PDF Gamma-Laguerre series expansion estima-
tion for three different sets of system parameters. In contrast
with Gram-Charlier series expansion, it is clearly shown that
for clean signal, the approximation is good. However, for noisy
signal, the approximation is not very accurate. This is because
Gamma-Laguerre series expansion only has positive support.

Fig. 4. Gram-Charlier series expansion for three different system parameters
presented in Table I. (a) Skew-Kurtosis curves. (b) PDF estimation vs. Monte
Carlo simulation.

3) Beta-Jacobi Series Expansion: In Fig. 6 we plot the
S-K curve and PDF Beta-Jacobi series expansion estimation
for three different sets of system parameters. For all three
cases, the approximation is accurate. The only drawback for
Beta-Jacobi estimation is the small fluctuations around the tail
of the density.

D. Event Detection Performance Comparison
We now present the detection performance of the algorithms

via Receiver Operating characteristics (ROC) for different se-
ries expansion methods. We select one representative scenario
of high noisy signal to show the direct effect of the S-K curve
has on the performance of the series expansions.
In Fig. 7, we present the ROC curve for noisy signal,

and various values of the path-loss exponent
. In this case our Beta-Jacobi expansion out-

performs the Gamma-Laguerre expansion and is comparable
with the Gram-Chalier expansion. The system parameters are:

and we vary from 1.9
to 2.3. It is shown that Gamma-Laguerre performs the worst
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Fig. 5. Gamma-Laguerre series expansion for three different system parame-
ters in Table I. (a) Skew-Kurtosis curves. (b) PDF estimation vs. Monte Carlo
simulation.

Fig. 6. Beta-Jacobi series expansion for three different system parameters
in Table I. (a) Skew-Kurtosis curves. (b) PDF estimation vs. Monte Carlo
simulation.

for these cases. This is because the support of the marginal
density has negative values and Gamma-Laguerre can only

Fig. 7. ROC curves for the three series expansions for different values of path-
loss exponent . The second to third rows shows the S-K
curves for the three series expansion methods respectively.

have positive support. The same interpretation can also be
found in the S-K curves.
The proposed Beta-Jacobi series expansion is a general

scheme which is suitable for both clean and noisy signals. The
advantage of using our proposed Beta-Jacobi series expansion
is that it performs at least as well as the other series expansions
in any system parameter values, as depicted in Fig. 7. This
means that the Beta-Jacobi series expansion replaces the need
to work with two different series expansions and eliminates
the need to decide at which system parameters (such as signal
and noise values, path-loss exponent, deployment size etc.)
to switch from one expansion to the other. One important
contribution we are making in this regard is the development
of an analysis tool which is based on the Skew-Kurtosis of
each expansion and provide the statistical interpretation why
the other expansions cause detection performance degradation,
since they do not fulfill the positive support condition of the
probability density function.
The effect of the frame length on the ROC performance

is shown in Fig. 8. This clearly shows that increasing number
of observations delivers improved detection performance, es-
pecially for low false alarm rate.

VII. CONCLUSIONS

In this paper, an event detection algorithms in Wireless
Sensor Networks was developed under two types of random
spatial deployments. A binary hypothesis testing problem
was formulated and optimal decision rule was designed for
it. The marginal densities under two hypothesis were derived.
We used simple yet accurate series expansion methods to
approximate the marginal density under alternative hypothesis.
The various series expansion methods were practical and suit-
able for different practical scenarios. We also used extensive
simulation results to generate the Receiver Operating Curves
(ROC) under different sets of parameters. The optimality of the
series expansion methods was verified and the Skew-Kurtosis
Curves were shown for each method. Our schemes provided
useful benchmark for other centralized and distributed scheme
designs.
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Fig. 8. Effect of different number of time frames on the ROC performance
using Beta-Jacobi series expansion for Low SNR case

.

APPENDIX A
PROOF OF THEOREM 1

Proof: We begin by calculating , as defined in Definition
1. According to [39], assume that is contained within

and is circle with Radius . We then obtain that

,

where .
Next, utilizing the results in [39], we can find the general ex-

pression for distribution distribution under inhomogeneous de-
ployment. The procedure is same except that we use the ex-
pression for from the above equation. For BPP, is finite
number. For IPPP, is asymptotically . we obtain the
following:

BPP deployment:

IPPP deployment:

APPENDIX B
PROOF OF LEMMA 1

Proof: We utilize the results for transformation of random
variables to obtain:

BPP deployment:

IPPP deployment:
Let , . Then

APPENDIX C
PROOF OF THEOREM 2

Proof: To obtain the coefficients , we need to solve the
following expression:

Using the following series expansion:

and after some algebraic manipulations, we obtain that

where .
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APPENDIX D
PROOF OF THEOREM 3

Proof: We express the fourth order Beta-Jacobi series ex-
pansion as follows:

and .
In order to guarantee that is positive, we obtain the fol-

lowing set of equations

Solving for the Skew and Kurtosis, we obtain that:

where

and

APPENDIX E
PROOF OF THEOREM 4

Proof:
1) BPP deployment:

We define the following change of variables:
. We express the -th moment of :

where is the function and

Finally we obtain that

2) IPPP deployment: We express the -th moment:

Using the identity and the
following change of variables we
obtain that
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APPENDIX F
PROOF OF LEMMA 5

Proof:
1) BPP deployments:

Using the result in Theorem 4, MGF of is given by:

Due to the conditional independence of , and that the
MGF of is given by , we have
that

2) IPPP deployments:
Using the result in Theorem 4, MGF of is given by:

Using the same procedure as before, we obtain that

In order to derive cumulants and moments, first we find the
cumulant function under both deployments.
1) BPP deployment:

Next we obtain the first cumulant as follows:

Similarly, by taking the second, third and forth deriva-
tive of . We next find the , and as shown in
Theorem 5.

2) IPPP deployment:
, , and are in the same form as those in BPP

deployment using the appropriate values for the moments.
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