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1 Introduction

Third Generation (3G) cellular networks such as UMTS and CDMA2000 are
expected to support a large variety of applications, where the traffic they
carry is commonly grouped into two broad categories: Elastic traffic corre-
sponds to the transfer of digital documents (e.g., Web pages, emails, stored
audio / videos) characterized by their size, i.e., the volume to be transferred.
Applications carrying elastic traffic are flexible, or “elastic”, towards capac-
ity fluctuations, the total transfer time being a typical performance measure.
Streaming traffic corresponds to the real-time transfer of various signals
(e.g., voice, streaming audio / video) characterized by their duration as well as
their transmission rate. Stringent capacity guarantees are necessary to ensure
real-time communication to support applications carrying streaming traffic.

Various papers have been published recently that study wired links carrying
integrated (elastic and streaming) traffic. In terms of resource sharing, the clas-
sical approach is to give head-of-line priority to packets of streaming traffic in
order to offer packet delay and loss guarantees [7,5,11]; alternatively, adaptive
streaming traffic (that is TCP-friendly and mimics elastic traffic) is considered
in [9,3,13]. Markovian models have been developed for the exact analysis of
these systems [11,14]. However, they can be numerically cumbersome due to
the inherently large dimensionality required to capture the diversity of user
applications. Hence, various approximations have been proposed [7,13], where
closed-form limit results were obtained that can serve as performance bounds,
and hence yield useful insight.

In this study, we consider downlink transmissions of integrated traffic in a
single 3G radio cell and propose an admission control strategy that allocates
priority to streaming traffic through resource reservation and guarantees the
capacity requirements of all users while maximizing the data rate of each elas-
tic user. The location-dependence of the wireless link capacity adds to the
dimensionality problem already inherent in the performance analysis of corre-
sponding wireline integrated services platforms. We describe the system model
in Section 2 and develop an approximation based on time-scale decomposition
in Section 3 to evaluate the user-level performance. We define two base station
models based on abstractions of the system model in Section 4 and present nu-
merical results comparing both models in Section 5. Some concluding remarks
are outlined in Section 6.
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2 System model

We consider a 3G radio cell (e.g., UMTS/W-CDMA) with a single downlink
channel whose transmission power at the base station (resource) is shared
amongst users carrying streaming and elastic traffic. We assume that the base
station transmits at full power, denoted by P, whenever there is at least one
user in the cell. In addition, a part of the total power, Ps ≤ P , is statically re-
served for streaming traffic, where unclaimed power is equally shared amongst
all elastic users. Note that although the resource that can be maximally guar-
anteed for on-going elastic traffic is Pe = P − Ps, they are permitted to use
more than Pe. However, the surplus is immediately allocated to streaming
traffic when a new streaming user arrives.

With W-CDMA technology, the base station can transmit to multiple users
simultaneously using orthogonal code sequences. Let Pu ≤ P be the power
transmitted to user u. The power received by user u is P r

u = PuΓu, where
Γu denotes the attenuation due to path-loss. For typical radio propagation
models, Γu for user u at distance δu from its serving base station is proportional
to (δu)

−γ, where γ is a positive path-loss exponent.

As a measure of the quality of the received signal at user u, we consider the
energy-per-bit to noise-density ratio,

(
Eb

N0

)
u
, given by

(
Eb

N0

)

u

=
W

Ru

P r
u

η + Ia
u + Ir

u

,

where W is the CDMA chip rate, Ru is the instantaneous data rate of user u, η
is the background noise (assumed to be constant throughout the cell) and Ir

u is
the inter -cell interference at user u caused by simultaneous interfering trans-
missions received at user u from the base station in the serving cell. For linear
and hexagonal networks, it can be shown [12] that Ir

u increases as δu increases.
On the other hand, intra-cell interference, Ia

u , is due to simultaneous trans-
missions from the serving base station of user u using non-orthogonal codes
(with total power P a

u ) to other users in the same cell received at user u. Quan-
titatively, we can write Ia

u = αP a
u Γu, where α is the code non-orthogonality

factor.

To achieve a target error probability corresponding to a given Quality of Ser-
vice (QoS), it is necessary that

(
Eb

N0

)
u
≥ εu, for some threshold εu. Equivalently,

the data rate Ru of each admitted user u is upper-bounded as follows:

Ru ≤ WPuΓu

εu(η + αP a
u Γu + Ir

u)
. (1)
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Accordingly, for a given Pu, α and user-type, the feasible data rate of user
u depends on its location (through Γu and Ir

u) and the intra-cell interference
power, P a

u .

2.1 Location-dependence

According to Eq. (1), the transmission power, Pu, needed to support the ca-
pacity requirement, ru, of user u is given by:

Pu ≥ ruεu[αP a
u Γu + η + Ir

u]

WΓu

≡ P̃u. (2)

Ideally, given perfect knowledge of the location of each user u at the base
station, a maximum number of users can be admitted by allocating exactly
P̃u to each user u. However, in reality, only the quantized location of each
user in the cell is known. This is obtained, e.g., by dividing the cell into J
disjoint segments, where we assume that the path-loss, intra-cell and inter-
cell interference are the same for any user in segment j = 1, . . . , J , denoted by
(Γj, Ia

j , Ir
j ), respectively. As J increases, the location quantization becomes

finer and approaches the ideal case (J=∞); on the other hand, the special
case of J=1 corresponds to the case where user-location is unknown.

Accordingly, we assume that elastic and streaming users arrive at segment
j as independent Poisson processes at rates λj,e and λj,s, with capacity re-
quirements of rj,e > 0 and rj,s > 0 respectively. Elastic users in segment j
have a general file size (or service requirement) distribution with mean fj,e

(bits) and, similarly, the holding times of streaming users may be taken to
have mean 1/µj,s (secs). The total arrival rates of elastic and streaming users
to the cell are denoted by λe =

∑J
j=1 λj,e and λs =

∑J
j=1 λj,s. The minimum

energy-to-noise ratio, εu, may depend on the user type and location [1], and
will be denoted by εj,e and εj,s for elastic and streaming users in segment j,
respectively.

2.2 Resource Sharing

Given the transmission power, Pu, the mechanism via which the total power,
P, is shared amongst all users (resource sharing) determines the total intra-cell
interference power experienced at user u, P a

u . When the base station transmits
to all users in the cell simultaneously, each user u experiences the maximum
intra-cell interference power, given by P -Pu; on the other hand, if time is
slotted and the base station transmits only to one user in each time slot (time
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sharing), then there will be no interference power. Accordingly, we have the
following expressions for P a

u :

P a
u





= P − Pu, simultaneous transmission to all users in the cell;

< P − Pu, simultaneous transmission to some users in the cell;

= 0, no simultaneous transmission (time-sharing).

2.3 Admission Control

We propose an admission control strategy that ensures the required capacity ru

of each admitted user u is satisfied. Let Nj,e and Nj,s denote the number of elas-
tic and streaming users in segment j respectively, and define Nj = Nj,e + Nj,s.
We further define the vectors Ne = (N1,e, . . . , NJ,e) and Ns = (N1,s, . . . , NJ,s)
and let Ne and Ns be the total number of elastic and streaming users in the
cell respectively. Let (βj, γj) be the minimum transmission power required by
an (elastic, streaming) user in segment j to sustain a capacity requirement
of (rj,e, rj,s), respectively. Depending on the resource sharing mechanism em-
ployed, (βj, γj) can be evaluated using Eq. (2).

Streaming users are always accommodated with exactly their required capac-
ity, consuming a total power of

Ps(Ns) =
J∑

j=1

Nj,sγj.

Hence, the capacity of elastic users must be achievable with power Pe = P−Ps.
Since all elastic users receive an equal portion of the available power, we
conclude that

Neβj ≤ Pe,

must hold for all j with Nj,e > 0, or equivalently,

Neβj1(Nj,e>0) ≤ Pe, ∀j. (3)

The indicator function 1E equals 1 if expression E holds and is 0 otherwise.
Note that the J conditions in (3) only limit the total number of elastic users
Ne, but that the maximum number of users does depend on the entire vector
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Ne. Similarly, the fact that elastic users share power equally, together with the
minimum power restrictions of both elastic and streaming users, imply that

Neβj1(Nj,e>0) + Ps(Ns) ≤ P, ∀j. (4)

Conditions (3) and (4) completely determine the admission policy: a newly-
arrived user will be accepted only if the resulting system state, (Ne, Ns),
satisfies all 2J conditions. Alternatively, these conditions may be formulated in
terms of the required power for each user type. Similar to Ps(Ns), we determine
the transmission power required by elastic requests:

Pe(Ne,Ns) ≡ Ne × max
j:Nj,e>0

{βj} .

Note that this expression depends on the system state, (Ne, Ns).

Our admission control policy for streaming users can now be formulated as
follows: a newly-arrived streaming user in segment i will be admitted if

Pe(Ne,Ns + ei) + Ps(Ns + ei) ≤ P, (5)

where the vector ei has its ith component equal to 1 and all other components
are 0.

For elastic users, we must incorporate the power reservation restrictions as
well. If we define

P s(Ns) ≡ max {Ps, Ps(Ns)} ,

then a newly-arrived elastic user in segment i will be admitted if

Pe(Ne + ei,Ns) + P s(Ns) ≤ P (6)

While the admission control proposed in [7] is similar, it results in equal block-
ing probabilities for both types of traffic. Due to resource reservation in our
case, the blocking probabilities will depend on both the user type and location.

2.4 Rate allocation

While streaming users are accommodated with exactly their required capac-
ities, i.e., rj,s in segment j, the date rates allocated to elastic users depend
on the number, type and location of other users. The available transmission
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power for elastic flows is P − Ps(Ns), of which all active elastic users receive
an equal portion regardless of their location. Using Eq. (1), an elastic user in
segment j attains a data rate

rj,e(Ne,Ns) =
W P−Ps(Ns)

Ne

εe[αP a
j,e +

η+Ir
j

Γj
]
, (7)

where P a
j,e is the total intra-cell interference experienced by that user, which

depends on the resource sharing mechanism. Accordingly, the departure rate
of elastic users in segment j is given by:

µj,e(Ne,Ns) =
Nj,erj,e(Ne,Ns)

fj,e

. (8)

3 Analysis

Since exact analysis of our model is non-tractable in general and computation-
ally involved when assuming exponentially distributed holding times and file
sizes [11,14], we develop an approximation based on time-scale decomposition
to evaluate the cell performance and assess the accuracy through comparison
with simulation.

3.1 Quasi-stationary Approximation

We develop a quasi-stationary approximation for elastic flows, to be denoted
A(Q,J), where we assume that the dynamics of streaming flows take place
on a much slower time scale than those of elastic flows. More specifically,
we assume that elastic traffic practically reaches statistical equilibrium while
the number of active streaming calls remains unchanged, i.e., we assume that
all µj,s and λj,s are much smaller than any of the quantities 1/fj,e and λj,e.
This assumption is reasonable when we consider the combination of voice calls
(streaming) and web-browsing or email (elastic) applications. Under this as-
sumption, the dynamics of elastic flows can be studied by fixing the number
of streaming flows in each segment, i.e., we fix the vector Ns ≡ ns.

3.1.1 Conditional distribution for elastic traffic

We construct an approximation assuming that the number of active elas-
tic flows instantaneously reaches a new statistical equilibrium whenever Ns
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changes. For fixed Ns ≡ ns, the elastic traffic behaves like a J -class M/G/1
processor-sharing (PS) queue with admission control dictated by both (3) and
(4). To avoid any confusion, we will append a superscript Q to all quanti-
ties (such as queue lengths and performance measures) resulting from this
approximation.

For general service requirement distributions of elastic users and an admission
region of the type

∑
j NQ

j,e ≤ M , the steady state distribution of the numbers
of jobs in each segment was shown to be a multivariate geometric distribu-
tion [6]. This can be shown to imply the same stationary distribution (up
to a multiplicative constant) for the elastic users under the quasi-stationary
assumption. For phase-type distributions, this can be proved formally by tak-
ing M large enough so that the set of allowable states (3) and (4) can be
included. The joint process of queue lengths and service phases is reversible,
so that state-space truncation does not destroy detailed balance and one can
obtain the stationary distribution of the restricted process by re-normalization
of the steady-state measure:

PQ(ne|ns)≡P(NQ
e = ne | NQ

s = ns)

= cQ
e (ns)ne!

J∏

j=1

ρj,e(ns)
nj,e

nj,e!
, (9)

where we have defined ρj,e(ns) = λj,e

µj,e(ns)
and the normalization constant cQ

e (ns)

is such that adding (9) over all ne that satisfy (3) and (4) gives a total of 1,
for each fixed ns. We finally recall that ne =

∑J
j=1 nj,e.

The conditional acceptance probability of newly-arrived elastic flows in seg-
ment i is

AQ
i,e(ns) ≡ P(Pe(N

Q
e + ei,ns) ≤ P − P s(ns) | NQ

s = ns).

From (9), we can also obtain the distribution of ne by summing over all ad-
mitted combinations of nj,e such that

∑
j nj,e = ne. For the special case where

βi ≡ β for all i − we call this uniform admission control 4 −, the distribution

4 With uniform admission control, the minimum required power is the same for
all users, irrespective of their locations. As a consequence, the minimum rates are
determined by the locations: users further away from the base station or with larger
inter-cell interference must compromise for a lower rate. Thus, although the ad-
mission policy is the same, users in different segments are distinguished by the
achievable rates (as well as their own traffic distributions).
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of ne reduces to a simple truncated geometric distribution:

P(NQ
e = ne | NQ

s = ns) =
ρe(ns)

ne(1− ρe(ns))

1− ρe(ns)nQ,max
e (ns)

, (10)

where nQ,max
e (ns) = b

(
P − P s(ns))/β

⌋
and ρe(ns) = λe

µe(ns)
is the total depar-

ture rate of elastic requests from the cell.

We emphasize that, assuming quasi-stationarity, (9) and (10) are valid for
general distributions of elastic requests [6]. Note that these expressions are
insensitive to the file size distributions, other than through their means. As a
further remark, we observe that stability is of no concern in our model, since
NQ

e is bounded due to the assumption that rj,e > 0. Often, when applying a
time-scale decomposition, the issue of stability is of considerable importance,
giving rise to an additional assumption commonly referred to as uniform sta-
bility [5].

Remark 1 According to Eq. (8), the departure rate of elastic requests depends
on the system state, (ne, ns). However, to apply Eq. (9) and (10), the depar-
ture rate can depend on the system state through ns only. We illustrate how
this can be achieved with various resource sharing mechanisms in Section 4.

3.1.2 Unconditional marginal distributions

Next, we consider the dynamics of streaming flows. When NQ
s =ns, stream-

ing flows depart at a rate
∑

j nj,sµj,s. When a new streaming flow arrives in
segment i, due to admission control, it is either accepted or blocked. Under
our approximation assumptions, the probability of acceptance in segment i,
AQ

i,s(ns), is given by:

P
(
Pe(N

Q
e ,ns + ei) ≤ P − Ps(ns + ei) | NQ

s = ns

)
.

Hence, the effective arrival rate of streaming flows in segment i, ΛQ
i,s(ns), is

given as follows:

ΛQ
i,s(ns) = λi,sA

Q
i,s(ns).

As a side remark, note that AQ
i,s(ns) = 1 if Ps(ns + ei) ≤ Ps, since the admis-

sion control on elastic flows ensures that NQ
e βj1(Nj,e>0) ≤ P − Ps for all j.

In general, there is no closed-form expression for the equilibrium distribution
of NQ

s and we must assume exponential or phase-type holding time distribu-
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tions and resort to standard methods to (numerically) solve the equilibrium
distribution of a finite-state Markov process. Note that the dimension of this
process NQ

s is much smaller than that of the original process (Ne,Ns): the
component Ne is “eliminated” in the approximation. However, if we apply
uniform admission control for streaming traffic by taking γj ≡ γ independent

of j [see the earlier Footnote 4], then AQ
i,s(ns) ≡ AQ

s (ns) is independent of i

and depends on ns only through the total number of streaming flows. NQ
s can

then be shown to be balanced [4] and can be reduced to the framework of [6].
It follows that, for arbitrary holding time distributions of streaming flows, and
0≤ ns ≤ nmax

s = bP
γ
c:

P(NQ
s = ns) = cQ

s

ns−1∏

k=0

AQ
s (k)

J∏

j=1

(ρj,s)
nj,s

nj,s!
, (11)

with ρj,s = λj,s/µj,s and cQ
s = P (NQ

s = 0) can be determined by normaliz-
ing (11) to a probability distribution. Letting ρs =

∑
j ρj,s, we further obtain

the distribution of the total number of active streaming flows (still for uniform
admission control):

P(NQ
s = ns) = cQ

s

(ρs)
ns

ns!

ns−1∏

k=0

AQ
s (k), (12)

which in this case results again in a simple expression for the normalizing
constant:

cQ
s =




nmax
s∑

ns=0

(ρs)
ns

ns!

ns−1∏

k=0

AQ
s (k)



−1

.

To conclude this section, we now calculate several relevant performance mea-
sures (not restricting anymore to uniform admission control) by un-conditioning
on NQ

s . In general, the unconditional distribution for the number of elastic
users is

P(NQ
e = ne) =

∑

ns

PQ(ne | ns)P(NQ
s = ns). (13)

The unconditional blocking probabilities in segment i are

pQ
i,s =

∑

ns

(1− AQ
i,s(ns))P(NQ

s = ns), (14)

for streaming flows; similarly, for elastic flows, we have:
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pQ
i,e =

∑

ns

(1− AQ
i,e(ns))P(NQ

s = ns).

3.2 Fluid Approximation

The fluid approximation (from the perspective of elastic flows), denoted by
A(F,J), complements the quasi-stationary approximation: We now assume
that the dynamics of elastic flows are much slower than those of streaming
flows, i.e., the λj,s and µj,s are much larger than the λj,e and 1/fj,e. This as-
sumption is valid when we consider the combination of voice calls (streaming)
and large file transfer (elastic) applications. The dynamics of streaming flows
can then be studied by fixing the number of elastic flows in each segment. This
approximation will be reflected in the notations by adding a superscript F .
Similar to A(Q, J), we will construct an approximating 2J-dimensional pro-
cess under the assumption that NF

s immediately reaches steady state, when-
ever NF

e changes.

3.2.1 Conditional distribution of streaming traffic

We fix the number of elastic flows in each segment: NF
e = ne. Under the

“fluid” approximation assumption, we can model the streaming flows as a
J -class Erlang-loss queue with finite capacity:

PF (ns | ne)≡P(NF
s = ns | NF

e = ne)

= cF
s (ne)

J∏

j=1

ρ
nj,s

j,s

nj,s!
, (15)

where ρj,s = λj,s

µj,s
. As before, we emphasize that the above expression depends

on the holding time distribution only through its mean. The constant cF
s (ne)

can again be determined by requiring that (15) adds to 1 when summing
(for fixed ne) over all ns such that Pe(ne,ns) + Ps(ns) ≤ P . For uniform
admission control, i.e., γi ≡ γ independent of i, this results in an elegant
form of the distribution for the total number of streaming users (a truncated
Poisson distribution), as well as for the normalization constant:

P(NF
s = ns | NF

e = ne) = cF
s (ne)

(ρs)
ns

ns!
,
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and

cF
s (ne) = (

nF,max
s (ne)∑

k=0

(ρs)
k

k!
)−1,

where nF,max
s (ne) is the maximum number of streaming users for which Pe(ne,ns)+

Ps(ns) ≤ P .

3.2.2 Unconditional marginal distributions

Next, we consider the dynamics of elastic flows. When NF
e = ne > 0, elastic

flows in segment j (if any) experience an average data rate (recall that ne is
the sum over all components of the vector ne):

rj,e(ne)≡E[rj,e(ne,N
F
s ) | NF

e = ne]

=
∑

ns

rj,e(ne,ns)PF (ns | ne), (16)

where the summation is taken over all ns for which Pe(ne,ns) + Ps(ns) ≤ P .
The (state-dependent) departure rate of elastic flows from segment j is

nj,erj,e(ne)/fj,e.

In order to fully describe the dynamics of the elastic flows, we now determine
the arrival rate, which also depends on the state ne because of the employed
admission control. Under our approximation assumptions, the probability of
acceptance in segment i is given by:

AF
i,e(ne) ≡ P(P s(N

F
s ) + P e(ne + ei,N

F
s ) ≤ P | NF

e = ne),

and, consequently, the effective arrival rate of elastic flows in segment i is

ΛF
i,e(ne)≡λi,eA

F
i,e(ne).

As for the quasi-stationary approximation, in general, there is no closed-form
expression for the distribution of NF

e . However, under additional assumptions,
NF

e is balanced [4]. This is the case, for example, if we assume perfectly or-
thogonal codes (α = 0) and apply uniform admission control for elastic traffic
by taking βj ≡ β independent of j. In this case, the dynamics of NF

s depends
on NF

e only through the total number of elastic users Ne, so if we define

h(ns) = P − Ps(ns),

12



then, we can write

E[h(NF
s ) | NF

e = ne] = E[h(NF
s ) | NF

e = ne] ≡ g(ne).

If we further define

νj =
WΓj

εj,e[η + Ir
j ]

,

then, from Eq. (7) and (16), we obtain

rj,e(ne) ≡ rj,e(ne) =
νj g(ne)

ne

.

Furthermore, AF
i,e(ne) is independent of i and depends on ne only through the

total number of elastic flows, i.e., AF
i,e(ne) ≡ AF

e (ne).

It follows that, for arbitrary file size distributions, and 0≤ ne ≤ nmax
e = bPe

β
c:

P(NF
e = ne) = cF

e

ne∏

k=1

k AF
e (k − 1)

g(k)

J∏

j=1

(
ρj,e

νj

)nj,e

, (17)

with ρj,e = λj,e fj,e and cF
e = P (NF

e = 0) can be determined after normaliza-
tion. We further obtain the distribution of the total number of file transmis-
sions (still for uniform admission control and α = 0):

P(NF
e = ne) = cF

e


∑

j

ρj,e

νj




ne ne∏

k=1

k AF
e (k − 1)

g(k)
, (18)

leading to a simple expression for the normalizing constant as before:

cF
e =




nmax
e∑

ne=0


∑

j

ρj,e

νj




ne ne∏

k=1

k AF
e (k − 1)

g(k)



−1

.

Remark 2 If the codes are not perfectly orthogonal (α > 0), we can still apply
the above analysis in case the background noise and inter-cell interference are
negligible (ηj + Ir

j << αP a
j,eΓj) by choosing

νj =
W

αεj,eP a
j,e

.
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We conclude this section with the following unconditional performance mea-
sures:

P(NF
s = ns) =

∑

ne

PF (ns | ne)P(NF
e = ne). (19)

The unconditional blocking probabilities in segment i are

pF
i,e =

∑

ne

(1− AF
i,e(ne))P(NF

e = ne), (20)

and

pF
i,s =

∑

ne

(1− AF
i,s(ne))P(NF

e = ne).

4 Specific models

Based on the abstraction of the model in terms of (a) location-dependence
and (b) resource sharing mechanism, we can define variants of the base station
model, where our objective is to evaluate the performance gain achieved with
location-awareness and time-sharing so as to ascertain if the added processing
complexity at the base station is justified.

4.1 CDMA model

In this model, the base station does not maintain location information of each
user (i.e., J=1), and transmits simultaneously to all users. As such, each user
u is distinguished only in terms of its type (i.e., streaming (u ≡ s) vs elastic
(u ≡ e)). Hence, the system state (Ne, Ns) reduces to (Ne, Ns) and we can
drop the subscript j from the notations. In addition, due to simultaneous
transmission to all users, P a

u = P -Pu, and Eq. (1) can be written as follows:

Ru ≤ WPu

εu[α(P − Pu) + η+Ir
u

Γu
]
,

which can be re-written as follows:

Pu ≥
Ruε(

η+Ir
max

Γmin
+ αP )

W + αεRu

. (21)
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For linear and hexagonal networks and typical propagation models, Γu = Γmin

and Ir
u = Ir

max when user u is located at the edge of the cell.

Accordingly, we can define the minimum power required by an (elastic, stream-
ing) user to sustain capacity requirements of (re, rs) as follows:

β =
reε(

η+Ir
max

Γmin
+ αP )

W + αεre

,

γ =
rsε(

η+Ir
max

Γmin
+ αP )

W + αεrs

. (22)

Eq. (3) and (4) can be written as follows:

Neβ ≤ Pe,

Neβ + Nsγ ≤ P. (23)

By substituting Eq. (22) into Eq. (23) and defining r = max(re, rs), we obtain
the following:

Nere + Nsrs ≤ P (W + αεr)

ε(η+Ir
max

Γmin
+ αP )

. (24)

4.1.1 Equivalent wired link analysis

According to Eq. (24), if we define c ≡ P (W+αεr)

ε(
η+Ir

max
Γmin

+αP )
, then the downlink trans-

mission scenario in the CDMA model can be approximated by a wired link
with capacity c shared amongst streaming and elastic requests, where cs =
Ps

P
c is reserved for streaming requests. Details of the analysis of this model

based on the quasi-stationary and fluid approximations (denoted by A(Q)
and A(F) respectively) can be found in [10].

4.1.2 General analysis

Referring to Remark 1, to apply the quasi-stationary approximation, the de-
parture rate of elastic users from the cell should only depend on the system
state (Ns, Ne) through Ns. From Eq. (8), we have the following expression:

µe(Ne, Ns) =
W [P − Ps(Ns)]

εe[α(P − P−Ps(Ns)
Ne

) + η+Ir
max

Γmin
]
.
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It is not straightforward to obtain an approximation, µe(Ns), for µe(Ne, Ns).
On the other hand, the fluid approximation developed in Section 3.2 can be
applied for this model.

4.2 HSDPA model

Based on our definition in Section 1, each streaming (elastic) user u has a fixed
(minimum) capacity requirement, denoted by ru. According to our resource
reservation policy, while each streaming user transmits at fixed rate ru, the
transmission rate of an elastic user u, Ru (≥ ru), depends on the resource
unclaimed by streaming traffic, given by P -P s(Ns). From Eq. (1), Ru can be
maximized by minimizing P a

u . One approach to do so is to apply time-sharing
amongst elastic users.

If we aggregate all elastic users, the resource sharing mechanism is such that
the base station transmits using (almost-)orthogonal codes to all users, where
the aggregate elastic user may be assigned several codes. Within the aggregate
user, elastic users sharing the same code are served in a time-slotted fashion
so that they do not interfere with one another, but only with elastic users
using different codes and streaming traffic. This resource sharing mode is
similar to UMTS / HSDPA, where up to Nc = 4 codes can be shared amongst
data/elastic users. We assume that Nc = 1 in our study.

For the HSDPA model defined here, the base station has the capability to
maintain quantized location information (at different levels of granularity)
and also supports time-sharing resource sharing amongst elastic requests as
described above.

4.2.1 Impact on admission control

According to the above resource sharing policy, the received signal at each
streaming user u in segment j is interfered by simultaneous transmissions to
all other users, i.e., P a

u = P -Pu and from (2) we obtain

γj =
rj,sεj,s[αPΓj + η + Ir

j ]

(W + αrj,sεj,s)Γj

.

For an elastic user u in segment j, we have P a
u = Ps(Ns) since its received

signal is only interfered by streaming users. Hence, the power required by an
elastic user in segment j to sustain its capacity requirement, rj,e, depends on

16



the number and location of streaming users as follows:

βj(Ns) =
rj,eεj,e[αPs(Ns)Γj + η + Ir

j ]

WΓj

.

The admission control scheme is such that a newly-arrived user is blocked
only if accepting it would violate either the static reservation policy or the
minimum power requirement of any user. At any time, streaming traffic can
claim a portion Ps of the total power P . Therefore, the power required by an
elastic user in segment j is given by:

βj ≡ βj(Ns) =
rj,eεj,e[αPs(Ns)Γj + η + Ir

j ]

WΓj

.

4.2.2 Impact on rate allocation

Using Eq. (7) and (8), with time-sharing amongst elastic users, the departure
rate of elastic users in segment j is given by:

µj,e(Ne,Ns) =
Nj,eW [P − Ps(Ns)]

fj,eNeεe[αPs(Ns) +
η+Ir

j

Γj
]
. (25)

Since Nj,e

Ne
≤ 1, we have the following:

µj,e(Ne,Ns) ≤ W [P − Ps(Ns)]

fj,eεe[αPs(Ns) +
η+Ir

j

Γj
]
≡ µj,e(Ns). (26)

Referring to Remark 1, to apply the quasi-stationary approximation, it is
necessary to remove the dependence of µj,e(Ne, Ns) on Ne in Eq. (25). This can
be achieved by approximating µj,e(Ne, Ns) with µj,e(Ns); this approximation
is exact when location information is unknown (i.e., J=1).

As with the basic CDMA model, the fluid approximation can be applied for
this model. Further details on the analysis of this model can be found in [8].

5 Performance Evaluation

We consider a single UMTS cell whose radius, δJ , is computed using the refer-
ence link budget given in Table 8.3 of [1] and the Okumura-Hata propagation
model [2] for an urban macro cell. The inter-cell interference at each location
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P (W) (20, 0.2)

(W) 6.09x10
-14

W (chips /s) 3.84x10
6

dB 2

UMTS and traffic parameters

Ps (W) 10

0.5

re (kbps) 128

rs (kbps) 128

Propagation Model Okumura-Hata Model [2]

Inter-cell Interference 

Model

Hexagonal network with 

maximum tx. power [12]

Link budget Table 8.3 [1]

Table 1
UMTS cell and traffic parameters for performance evaluation.

within the cell is computed based on the conservative approximation for a
hexagonal network [12].

Elastic (streaming) users arrive at the cell according to a Poisson process at
rates λe (λs), capacity requirement re (rs), target energy-to-noise ratio εe (εs),
mean file size fe (holding time 1

µs
) and are assumed to be uniformly distributed

over the cell. In addition to the mean number of users, (E[Ne], E[Ns]), and
blocking probabilities, (pe, ps), for each class of traffic, we define the stretch,
Se, for each admitted elastic user by normalizing the expected residence time,
E[Re], by the mean file size, fe, i.e., Se = E[Re]

fe
= E[Ne]

λe(1−pe)
(cf. Little’s Theorem).

A summary of the cell and traffic parameters is given in Table 1.

In [10] and [8], through simulations, we have demonstrated that the user-
performance obtained with the basic CDMA and HSDPA model is almost
insensitive to the actual distribution of the traffic parameters. This justifies
the application of the approximation techniques we develop, which depend on
the traffic parameter distribution only through the mean values. In addition,
we also demonstrated the accuracy of the approximations, particularly for the
extreme (quasi-stationary and fluid) traffic regimes.

Here, we focus on the comparison of the basic CDMA model and the HSDPA
model for the base station based on simulation as well as the approximations.
Unless otherwise stated, we assume that (ds, se) are exponentially distributed
with mean 1

µs
and fe respectively.
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5.1 Simulation Procedure

We develop a simulation program for our model by considering arrival / depar-
ture events of traffic requests (elastic or streaming). Each simulation scenario
is defined according to the following procedure:

1. Fix the level of location quantization, J :
J=1 : no location information;
J>1 : location information available.

2. Fix the total offered traffic by choosing the loading
factor, l > 0, where ue + us = l c,
ue = λefe and us = λsrs

µs
;

3. For each l, fix the traffic mix, ue

lc
, by choosing ue,

0 ≤ ue ≤ l c;
4. For each traffic mix, select (λe, λs) to fit one of

the following traffic regimes:
a. Quasi-stationary Regime (S(Q,J), cf. Section 3.1);
b. Fluid Regime (S(F,J), cf. Section 3.2);
c. Neutral Regime (S(N,J), fits neither a. nor b.)

We generate 5 sets of simulation results for each scenario, for which the sample
mean for each performance metric is computed and used for performance
comparison.

5.2 Impact of time-sharing (J=1)

We begin by investigating the performance gain achieved with time-sharing by
comparing the performance obtained for the basic CDMA model and HSDPA
model without location-awareness for various traffic regimes.

5.2.1 Quasi-stationary regime

We plot (pe, ps) and (E[Ne], Se) as a function of the traffic mix, ue

c
, 0≤ ue ≤

c in Fig. 1 and 2 respectively. We note that, since it is not straightforward
to apply the quasi-stationary approximation to the CDMA model (cf. Section
4.1.2), we utilize the equivalent wired link analysis to obtain the corresponding
quasi-stationary approximation.

Based on the simulation results, we observe a performance gain achieved as a
result of time-sharing in terms of reduced blocking probabilities, queue length
and sojourn time. This gain is expected since, for a given number of streaming
requests, time-sharing amongst elastic flows reduces the intra-cell interference
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power experienced by each elastic user, thereby increasing the data rate per
elastic user. This gain is marginal when elastic load is low, since the additional
interference experienced by an elastic user due to other elastic users (without
time-sharing) is insignificant.

In terms of the accuracy of approximations, we observe that the performance
obtained with the HSDPA model is well-tracked by the corresponding approx-
imation; on the other hand, the equivalent wired link analysis results in overly
conservative estimates of the performance for the CDMA model.
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Fig. 1. Blocking probability for elastic (left) and streaming requests (right) vs nor-
malized offered elastic load obtained for quasi-stationary regime (J=1).
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Fig. 2. Number of active elastic requests (left) and stretch of each admitted elas-
tic request vs normalized offered elastic load obtained for quasi-stationary regime
(J=1).

5.2.2 Fluid regime

We plot (pe, ps) and (E[Ne], Se) as a function of the traffic mix, ue

c
, 0≤ ue ≤

c in Fig. 3 and 4 respectively.

As with the quasi-stationary regime, we observe a performance gain achieved
as a result of time-sharing in terms of reduced blocking probabilities, queue
length and sojourn time. In terms of the accuracy of approximations, the
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blocking performance obtained with both models is well-tracked by the cor-
responding approximations. However, the approximations achieved more op-
timistic estimates of the queue length and sojourn time of elastic users.
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Fig. 3. Blocking probability for elastic (left) and streaming requests (right) vs nor-
malized offered elastic load obtained for fluid regime (J=1).
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Fig. 4. Number of active elastic requests (left) and stretch of each admitted elastic
request vs normalized offered elastic load obtained for fluid regime (J=1).

5.2.3 Neutral regime

We plot (pe, ps) and (E[Ne], Se) as a function of the traffic mix, ue

c
, 0≤ ue ≤

c in Fig. 5 and 6 respectively.

As with the extreme traffic regime, we observe a performance gain achieved
as a result of time-sharing in terms of reduced blocking probabilities, queue
length and sojourn time. For each performance metric, we note that the quasi-
stationary (fluid) approximation upper (lower) bounds the performance ob-
tained in the neutral traffic regime, where a tighter bound is obtained with
the HSDPA model.
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Fig. 5. Blocking probability for elastic (left) and streaming requests (right) vs nor-
malized offered elastic load obtained for neutral regime (J=1).
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Fig. 6. Number of active elastic requests (left) and stretch of each admitted elastic
request vs normalized offered elastic load obtained for neutral regime (J=1).

5.3 Impact of location-awareness (HSDPA model)

Next, we investigate the performance gain achieved with location-awareness
by comparing the performance obtained for the HSDPA model with various
degrees of location quantization, J. We define each segment j as the annulus
between concentric rings of radius δj−1 and δj such that δj = j

J
δJ , 1≤ j ≤ J .

Since user arrivals are uniformly distributed over the cell, their arrival rate in

each ring j is λj =
δ2
j−δ2

j−1

δ2
J

λ, where δ0 = 0.

5.3.1 P=20W

We plot (pe, ps) and (E[Ne], Se) as a function of the traffic mix, ue

c
, 0≤ ue ≤

c, for S(N,J) in Fig. 7 and 8 respectively for J=1, 2 and ∞ (correspond-
ing to the case of exact location information) for a neutral traffic regime. We
observe that the cell performance obtained with simulation is lower bounded
(well approximated) by A(F,J=1) (A(Q,J=1)), and that S(N,J) is almost
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invariant with the value of J. Hence, no significant performance gain is achieved
through exploiting more accurate location information in this case, and there-
fore, the performance can be approximated using location-unaware approxi-
mations (J=1).
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Fig. 7. Blocking probability for elastic (left) and streaming requests (right) vs nor-
malized offered elastic load obtained with approximation and simulation for HSDPA
model (J=1,2,∞, P=20W, neutral regime).
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Fig. 8. Number of active elastic requests (left) and stretch of each admitted elastic
request vs normalized offered elastic load obtained with approximation and simula-
tion for HSDPA model (J=1,2,∞, P=20W, neutral regime).

5.3.2 P=0.2W

In order to demonstrate the performance gain with exploiting user location, we
repeat the simulations for the case of P = 0.2W, and plot (pe, ps) and (E[Ne],
Se) as a function of the traffic mix, ue

c
, 0≤ ue ≤ c, for S(F,J) in Fig. 9 and

10 respectively. In this case, we note that as cell partitioning becomes finer
(increasing J ), the performance obtained with S(F,J) is improved significantly
(e.g., reduced blocking and sojourn time).
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Fig. 9. Blocking probability for elastic (left) and streaming requests (right) vs nor-
malized offered elastic load obtained with simulation for HSDPA model (J=1,2,∞,
P=0.2W, fluid regime).
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Fig. 10. Number of active elastic requests (left) and stretch of each admitted elastic
request vs normalized offered elastic load obtained with simulation for HSDPA
model (J=1,2,∞, P=0.2W, fluid regime).

6 Conclusions

Third generation wireless systems can simultaneously accommodate users car-
rying widely heterogeneous applications. Since resources are limited, particu-
larly in the air interface, admission control is necessary to ensure that all ac-
tive users are accommodated with sufficient bandwidth to meet their specific
Quality of Service requirements. We propose a general traffic management
framework that supports differentiated admission control, resource sharing
and rate allocation strategies, such that users with stringent capacity require-
ments (“streaming traffic”) are protected while sufficient capacity over longer
time intervals to delay-tolerant users (“elastic traffic”) is offered. This frame-
work permits users within each type to be distinguished according to their
distance from the base station through cell partitioning, and also supports a
time-sharing resource sharing mode to improve rate allocation to elastic traffic
while guaranteeing the capacity requirements of all users.
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Since the exact analysis to evaluate the performance of such an integrated
services system is non-tractable in general, we define extreme traffic regimes
(quasi-stationary and fluid) for which time-scale decomposition can be applied
to isolate the traffic streams, from which known results from fluid queueing
models are used to approximate the performance for each user type. For the
extreme traffic regimes, simulation results suggest that the performance is al-
most insensitive to traffic parameter distributions, and is well approximated
by our proposed approximations. In addition, we also demonstrate the per-
formance gain achieved by exploiting location information about each user,
as well as applying time-sharing amongst elastic users to improve their rate
allocation.
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[3] P. Key, L. Massoulié, A. Bain, and F. Kelly, “Fair internet traffic integration:
network flow models and analysis,” Annales des Telecommunications, vol. 59,
2004, pp. 1338–1352.

[4] T. Bonald and A. Proutière, “Insensitive bandwidth sharing in data networks,”
Queueing Systems, vol. 44, 2003, pp. 69–100.

[5] F. Delcoigne, A. Proutière, and G. Regnie, “Modeling integration of streaming
and data traffic,” Performance Evaluation, vol. 55, 2004, pp. 185–209.

[6] J. W. Cohen, “The multiple phase service network with generalized processor
sharing,” Acta Informatica, vol. 12, 1979, pp. 245–284.

[7] N. Benameur, S. B. Fredj, F. Delcoigne, S. Oueslati-Boulahia, and J. W.
Roberts, “Integrated admission control for streaming and elastic traffic,”
Lecture Notes in Computer Science, vol. 2156, 2001, pp. 69–81.

25
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