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a b s t r a c t

Future Generation CDMA wireless systems, e.g., 3G, can simultaneously accommodate
flow transmissions of users with widely heterogeneous applications. As radio resources
are limited, we propose an admission control rule that protects users with stringent
transmission bit-rate requirements (‘‘streaming traffic’’) while offering sufficient capacity
over longer time intervals to delay-tolerant users (‘‘elastic traffic’’). While our strategymay
not satisfy classical notions of fairness, we aim to reduce congestion and increase overall
throughput of elastic users. Using time-scale decomposition, we develop approximations
to evaluate the performance of our differentiated admission control strategy to support
integrated services with transmission bit-rate requirements in a realistic downlink
transmission scenario for a single radio cell.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Future Generation CDMA systems such as 3G are expected to support a large variety of applications, where the traffic
they carry is commonly grouped into two broad categories. Elastic traffic corresponds to the transfer of digital documents
(e.g., Web pages, emails and stored audio/videos) characterized by their size, i.e., the volume to be transferred. Applications
carrying elastic traffic are flexible, or ‘‘elastic’’, towards transmission bit-rate fluctuations, the total transfer time being a
typical performance measure. Streaming traffic corresponds to the real-time transfer of various signals (e.g., voice and
streaming audio/video) characterized by their duration as well as their transmission bit-rate.
Stringent transmission bit-rate guarantees are necessary to ensure real-time communication to support applications

carrying streaming traffic.2 Consequently, the classical approach to resource sharing amongst integrated (elastic and
streaming) traffic is to give head-of-line priority to packets of streaming traffic in order to offer packet delay and loss
guarantees. Markovian models have been developed for the exact analysis of these systems [4,5]. However, they can be
numerically cumbersome due to the inherently large dimensionality required to capture the diversity of user applications.
Therefore, various approximations have been proposed [6,3], where closed-form limit results were obtained that can serve
as performance bounds, and hence yield useful insight.
In this study, we consider downlink transmissions of integrated traffic in a single CDMA radio cell and propose an

admission control strategy that allocates priority to streaming traffic through resource reservation while guaranteeing a
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certain minimum transmission bit-rate requirements for all elastic users that share the remaining capacity equally. The
location dependence of the wireless link capacity adds to the dimensionality problem already inherent in the performance
analysis of corresponding wireline integrated services platforms.
Wedescribe our systemmodel in Section 2 anddevelop an approximation based on time-scale decomposition in Section 3

to evaluate the user-level performance. We define two base station models based on abstractions of the generic system
model in Section 4 and present numerical results comparing bothmodels in Section 5. Some concluding remarks are outlined
in Section 6.

1.1. Related work

Various papers have been published recently that study communication links that carry integrated traffic:

• Wired links. In [6], an admission control policy is proposed which ensures equal blocking probabilities for streaming
and elastic users. The thresholds used in the admission control are derived with the help of a fluid model. In [7], the
impact on performance of streaming and elastic users is analyzed and the important issue of stability is raised. For
the case of uniform stability (where the service rate for elastic users is higher than their arrival rate), by using time-
scale decomposition, the authors propose bounds on the expected response time. Our analysis is largely motivated by
Delcoigne et al. [7] and aims at incorporatingmorediversity of traffic classes, admission control rules and resource sharing
strategies into the modeling framework.
• Wireless links. While a single class of elastic users is commonly assumed inwired links, the use of several classes of users
seemsmore natural inwireless links, where geometry of the cell and interference play amajor role. In [8], the integration
of streaming and elastic traffic is analyzed for a time-slotted system with an admission control which ensures that the
number of streaming users is not affected by the number of elastic users. For this model, good approximations based on
time-scale decomposition are proposed. In [9,10], the complexity of themodel is increased by taking into account the cell
geometry and interference. The authors analyze several (fair) rate allocation schemes which lead to a feasible solution
to the power control problem.

The sufficient conditions for decentralization proposed in [11,9] allow base stations to independently allocate
transmission bit-rates among streaming and elastic users: If these conditions are satisfied (e.g., when all base stations
transmit at a constant power), the use of a single-cell will be justified. Hence, our focus is on devising an allocation strategy
that reserves capacity for streaming users while guaranteeing a certain minimum transmission bit-rate for all elastic users
that share available capacity equally in a single CDMAcell. In a 3G radio system, thiswill lead to higher bit-rates for users near
the base station. While our strategy may not satisfy common fairness criteria such as proportional-fairness and max–min
fairness, intuitively, by analogywith opportunistic scheduling, it should result in reduced congestion (i.e., reduced blocking)
and improved overall throughput for elastic users.
Our paper differs from [8] in that we account for interference and reserve a fixed capacity for streaming users. In our

model, the number of streaming users is influenced by the number of elastic users present, whichmakes the analysis slightly
more difficult. As compared to [6], we assume multiple classes of elastic users and account for interference between users.
We approximate the model by using time-scale decompositions, in a similar way to [6–8].

2. Systemmodel

We consider a CDMA (e.g., UMTS/W-CDMA) radio cell with a single downlink channel whose transmission power at
the base station (resource) is shared amongst users carrying streaming and elastic traffic. We assume that the base station
transmits at full power, denoted by P , whenever there is at least one user in the cell. In addition, a part of the total power,
Ps ≤ P , is statically reserved for streaming traffic, where unclaimed power (subject to a maximum of Pe = P − Ps) is equally
shared amongst all elastic users. Although in practice powermaynot be shared exactly equally, this assumption is reasonable
when, for example, a Proportional Fair rate sharing mechanism is employed, cf. [12].
With W-CDMA technology, the base station can transmit to multiple users simultaneously using orthogonal code

sequences. Let Pu ≤ P be the power transmitted to user u. The power received by user u is P ru = PuΓu, where Γu denotes the
attenuation due to path loss. For typical radio propagation models, Γu for user u at distance δu from its serving base station
is proportional to (δu)−γ , where γ is a positive path-loss exponent.
As a measure of the quality of the received signal at user u, we consider the energy-per-bit to noise-density ratio,

(
Eb
N0

)
u
,

given by(
Eb
N0

)
u
=
W
Ru

P ru
η + Iau + Iru

,

whereW is the CDMA chip rate, Ru is the instantaneous data rate of user u, η is the background noise (assumed to be constant
throughout the cell) and Iru is the inter-cell interference at user u caused by simultaneous interfering transmissions received
at user u from base stations in neighboring cells. For linear and hexagonal networks, it can be shown [13] that Iru increases as
δu increases. On the other hand, intra-cell interference, Iau , is due to simultaneous transmissions from the serving base station
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of user u using non-orthogonal codes (with total power Pau ) to other users in the same cell received at user u. Quantitatively,
we can write Iau = αP

a
uΓu, where α is the code non-orthogonality factor.

To achieve a target error probability corresponding to a given Quality of Service (QoS), it is necessary that
(
Eb
N0

)
u
≥ εu,

for some threshold εu. Equivalently, the data rate Ru of each admitted user u is upper-bounded as follows:

Ru ≤
WPuΓu

εu(η + αPauΓu + Iru)
. (1)

Accordingly, for a given Pu, α and user type, the feasible transmission bit-rate of user u depends on its location (through Γu
and Iru) and the intra-cell interference power, P

a
u .

2.1. Power control/allocation

According to Eq. (1), the transmission power, Pu, needed to support the transmission bit-rate requirement, ru, of user u
is given by:

Pu ≥
ruεu[αPauΓu + η + I

r
u]

WΓu
≡ P̃u. (2)

Ideally, given perfect knowledge of the location of each user u at the base station, a maximum number of users can be
admitted by allocating exactly P̃u to eachuseru.While this canbe realised byusers sending power-uporpower-down signaling
messages to the base station in response to overly-strong or overly-weak received signals, the actual power control is carried
out in discrete steps, e.g., {0.5, 1, 1.5, 2} dB in UMTS [14].
Formathematical convenience, wemanifest the discrete power control steps by dividing the cell into J disjoint segments,

where J is chosen to adequately cover the dynamic range of the received power levels for a given step size. Hence, for a given
dynamic range, a larger J corresponds to a smaller step size. The special cases of J = 1 (J = ∞) correspond to the scenario
where power control is disabled or infeasible (perfect). We assume that the path loss, intra-cell and inter-cell interference
are the same for any user in segment j = 1, . . . , J , denoted by (Γj, Iaj , I

r
j ), respectively.

Accordingly, we assume that elastic and streaming users arrive at segment j as independent Poisson processes at rates
λj,e and λj,s, with transmission bit-rate requirements of rj,e > 0 and rj,s > 0 respectively. Elastic users in segment j have
a general file size (or service requirement) distribution with mean fj,e (bits) and, similarly, the holding times of streaming
users may be taken to have mean 1/µj,s (s). The total arrival rates of elastic and streaming users to the cell are denoted by
λe =

∑J
j=1 λj,e and λs =

∑J
j=1 λj,s. The minimum energy-to-noise ratio, εu, may depend on the user type and location [14],

and will be denoted by εj,e and εj,s for elastic and streaming users in segment j, respectively.

2.2. Resource sharing

Given the transmission power, Pu, the mechanism via which the total power, P , is shared amongst all users (resource
sharing) determines the total intra-cell interference power experienced at user u, Pau . When the base station transmits to all
users in the cell simultaneously, each user u experiences the maximum intra-cell interference power, given by P − Pu; on
the other hand, if time is slotted and the base station transmits only to one user in each time slot (time sharing), then there
will be no interference power. Accordingly, we have the following expressions for Pau :

Pau

{
= P − Pu, simultaneous transmission to all users in the cell;
< P − Pu, simultaneous transmission to some users in the cell;
= 0, no simultaneous transmission (time-sharing).

2.3. Admission control

We propose an admission control strategy that ensures the required transmission bit-rate ru of each admitted user
u is satisfied. Let Nj,e and Nj,s denote the number of elastic and streaming users in segment j respectively, and define
Nj = Nj,e + Nj,s. We further define the vectors Ne = (N1,e, . . . ,NJ,e) and Ns = (N1,s, . . . ,NJ,s) and let Ne and Ns be the total
number of elastic and streaming users in the cell respectively. Let (βj, γj) be the minimum transmission power required by
an (elastic, streaming) user in segment j to sustain a transmission bit-rate requirement of (rj,e, rj,s), respectively. Depending
on the resource sharing mechanism employed, (βj, γj) can be evaluated using Eq. (2).
Provided there is sufficient capacity,3 streamingusers are always accommodatedwith exactly their required transmission

bit-rate, consuming a total power of

Ps(Ns) =
J∑
j=1

Nj,sγj.

3 This, commonly referred to as the pole capacity of the cell, follows from the restrictions imposed in our admission control formulation.
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The transmission bit-rate requirements of elastic users, on the other hand, must be achievable with power Pe = P − Ps.
Since they receive an equal portion of the available power, we conclude that

Neβj ≤ Pe,
must hold for all jwith Nj,e > 0, or equivalently,

Neβj1(Nj,e>0) ≤ Pe, ∀j. (3)
The indicator function 1E equals 1 if expression E holds and is 0 otherwise. Note that the J conditions in (3) only limit the
total number of elastic users Ne, but that the maximum number of users does depend on the entire vector Ne. Similarly, the
fact that elastic users share power equally, together with the minimum power restrictions of both elastic and streaming
users, implies that

Neβj1(Nj,e>0) + Ps(Ns) ≤ P, ∀j. (4)

Conditions (3) and (4)4 completely determine the admission policy: a newly-arrived user will be accepted only if the
resulting system state, (Ne,Ns), satisfies all 2J conditions.
Alternatively, these conditions may be formulated in terms of the required power for each user type. Similar to Ps(Ns), we

determine the transmission power required by elastic users:
Pe(Ne,Ns) ≡ Ne × max

j:Nj,e>0

{
βj
}
.

Note that this expression depends on the system state, (Ne, Ns).
Our admission control policy for streaming users can now be formulated as follows: a newly-arrived streaming user in

segment iwill be admitted if
Pe(Ne,Ns + ei)+ Ps(Ns + ei) ≤ P,

where the vector ei has its ith component equal to 1 and all other components are 0.
For elastic users, we must incorporate the power reservation restrictions as well. If we define
P s(Ns) ≡ max {Ps, Ps(Ns)} ,

then a newly-arrived elastic user in segment iwill be admitted if
Pe(Ne + ei,Ns)+ P s(Ns) ≤ P.

While the admission control proposed in [6] is similar, it results in equal blocking probabilities for both types of traffic. Due
to resource reservation in our case, the blocking probabilities will depend on both the type and location of users.

2.4. Rate allocation

While streaming users are accommodated with exactly their required transmission bit-rate, i.e., rj,s in segment j, the
transmission bit-rates allocated to elastic users depend on the number, type and location of other users. The available
transmission power for elastic users is P − Ps(Ns), of which all active elastic users receive an equal portion regardless of
their location. Using Eq. (1), an elastic user in segment j attains a transmission bit-rate

rj,e(Ne,Ns) =
W P−Ps(Ns)

Ne

εe[αPaj,e +
η+Irj
Γj
]

, (5)

where Paj,e is the total intra-cell interference experienced by that user, which depends on the resource sharing mechanism.
Accordingly, the departure rate of elastic users in segment j is given by:

µj,e(Ne,Ns) =
Nj,erj,e(Ne,Ns)

fj,e
. (6)

3. Analysis

Since exact analysis of ourmodel is non-tractable in general and computationally involvedwhen assuming exponentially
distributed holding times and file sizes [4,5], we develop an approximation based on time-scale decomposition to evaluate
the cell performance and to assess the accuracy through comparison with simulation. Our work is largely motivated by [7],
where time-scale separation techniques were introduced for the analysis of integration of streaming and elastic traffic. The
main goal in this section is to illustrate how the basic framework of [7] can be extended to cover various resource sharing
strategies, admission control policies and a larger variety of user classes so as to capture the user heterogeneity exemplified
in 3Gwireless systems. In our discussionwe explore the limits to such extensions if wewish to retain the desired tractability
of their analysis.

4 While this condition is pessimistic and may result in unnecessarily high blocking probability for elastic users, an admission policy that accounts for
the location of elastic users would render the processor sharing model for elastic users intractable (the assumptions in [15] no longer hold). On the other
hand, an overestimate of the power required for our admission control policy implies a better bit-rate, thus a better throughput for admitted elastic users.
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3.1. Quasi-stationary approximation

Wedevelop a quasi-stationary approximation for elastic users, to be denotedA(Q, J), wherewe assume that the dynamics
of streaming users take place on a much slower time scale than those of elastic users. More specifically, we assume that
elastic traffic practically reaches statistical equilibrium while the number of active streaming calls remains unchanged,
i.e., we assume that allµj,s and λj,s are much smaller than any of the quantities 1/fj,e and λj,e. This assumption is reasonable
when we consider a combination of voice calls (streaming) and web-browsing or email (elastic) applications. Under this
assumption, the dynamics of elastic users can be studied by fixing the number of streaming users in each segment, i.e., we
fix the vector Ns ≡ ns.

3.1.1. Conditional distribution for elastic traffic
We construct an approximation assuming that the number of active elastic users instantaneously reaches a new statistical

equilibrium whenever Ns changes. For fixed Ns ≡ ns, the elastic traffic behaves like a J-classM/G/1 processor sharing (PS)
queue with admission control dictated by both (3) and (4). To avoid any confusion, we will append a superscript Q to all
quantities (such as queue lengths and performance measures) resulting from this approximation.
For general service requirement distributions of elastic users and an admission region of the type

∑
j N
Q
j,e ≤ M , the

steady-state distribution of the number of jobs in each segment was shown to be a multivariate geometric distribution [15].
This can be shown to imply the same stationary distribution (up to a multiplicative constant) for the elastic users under the
quasi-stationary assumption. For phase-type distributions, this can be proved formally by takingM large enough so that the
set of allowable states (3) and (4) can be included. The joint process of queue lengths and service phases is reversible, so
that state-space truncation does not destroy detailed balance and one can obtain the stationary distribution of the restricted
process by renormalization of the steady-state measure:

PQ (ne|ns) ≡ P(NQe = ne | NQs = ns)

= cQe (ns)ne!
J∏
j=1

ρj,e(ns)nj,e

nj,e!
, (7)

where we have defined ρj,e(ns) =
λj,e

µj,e(ns)
and the normalization constant cQe (ns) is such that summing (7) over all ne that

satisfy (3) and (4) gives a total of 1, for each fixed ns. We finally recall that ne =
∑J
j=1 nj,e.

The conditional acceptance probability of newly-arrived elastic users in segment i is

AQi,e(ns) ≡ P(Pe(NQe + ei,ns) ≤ P − P s(ns) | NQs = ns).

From (7), we can also obtain the distribution of ne by summing over all admitted combinations of nj,e such that
∑
j nj,e = ne.

3.1.2. Unconditional marginal distributions
Next, we consider the dynamics of streaming users. When NQs = ns, streaming users depart at a rate

∑
j nj,sµj,s. When a

new streaming user arrives in segment i, due to admission control, it is either accepted or blocked. Under our approximation
assumptions, the probability of acceptance in segment i, AQi,s(ns), is given by:

P
(
Pe(NQe ,ns + ei) ≤ P − Ps(ns + ei) | NQs = ns

)
.

Hence, the effective arrival rate of streaming users in segment i,ΛQi,s(ns), is given as follows:

Λ
Q
i,s(ns) = λi,sA

Q
i,s(ns).

As a side remark, note that AQi,s(ns) = 1 if Ps(ns + ei) ≤ Ps, since the admission control on elastic users ensures that
NQe βj1(Nj,e>0) ≤ P − Ps for all j.

3.1.3. Evaluation of performance measures
We can now calculate several relevant performance measures by unconditioning on NQs . The unconditional distribution

for the number of elastic users is

P(NQe = ne) =
∑
ns

PQ (ne | ns)P(NQs = ns).

The unconditional blocking probabilities in segment i are

pQi,s =
∑
ns

(1− AQi,s(ns))P(N
Q
s = ns),
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for streaming users; similarly, for elastic users, we have:

pQi,e =
∑
ns

(1− AQi,e(ns))P(N
Q
s = ns).

While the numerical evaluation of PQ (ne | ns) and P(NQs = ns) is infeasible or cumbersome in general, we consider the
following special cases where closed-form expressions exist:

• Uniform admission control on elastic users. For the special case where βi ≡ β for all i – we call this uniform admission
control5 – the distribution of ne reduces to a simple truncated geometric distribution:

P(NQe = ne | N
Q
s = ns) =

ρe(ns)ne(1− ρe(ns))

1− ρe(ns)n
Q ,max
e (ns)

, (8)

where nQ ,maxe (ns) = b
(
P − P s(ns))/β

⌋
and ρe(ns) = λe

µe(ns)
is the total departure rate of elastic users from the cell.

• Uniform admission control on streaming users. Although we must assume exponential or phase-type holding time
distributions and resort to standard methods to (numerically) solve the equilibrium distribution of NQs , the dimension
of the finite-state Markov process NQs is much smaller than that of the original process (Ne,Ns): the component Ne is
‘‘eliminated’’ in the approximation.
However, if we apply uniform admission control for streaming traffic by taking γj ≡ γ independent of j (as above),

then AQi,s(ns) ≡ A
Q
s (ns) is independent of i and depends on ns only through the total number of streaming users. N

Q
s can

then be shown to be balanced [16] and can be reduced to the framework of [15]. It follows that, for arbitrary holding time
distributions of streaming users, and 0 ≤ ns ≤ nmaxs = b

P
γ
c:

P(NQs = ns) = cQs
ns−1∏
k=0

AQs (k)
J∏
j=1

(ρj,s)
nj,s

nj,s!
, (9)

with ρj,s = λj,s/µj,s and cQs = P(N
Q
s = 0) can be determined by normalizing (9) to a probability distribution. Letting

ρs =
∑
j ρj,s, we further obtain the distribution of the total number of active streaming users:

P(NQs = ns) = c
Q
s
(ρs)

ns

ns!

ns−1∏
k=0

AQs (k),

which in this case results again in a simple expression for the normalizing constant:

cQs =

(
nmaxs∑
ns=0

(ρs)
ns

ns!

ns−1∏
k=0

AQs (k)

)−1
.

We emphasize that, assuming quasi-stationarity, (7) and (8) are valid for general distributions of elastic users [15]. Note
that these expressions are insensitive to the file size distributions, other than through their means. As a further remark,
we observe that stability is of no concern in our model, since NQe is bounded due to the assumption that rj,e > 0. Often,
when applying time-scale decomposition, the issue of stability is of considerable importance, giving rise to an additional
assumption commonly referred to as uniform stability [7].

Remark 1. According to Eq. (6), the departure rate of elastic users depends on the system state, (ne,ns). However, to apply
Eqs. (7) and (8), the departure rate can depend on the system state through ns only. We illustrate how this can be achieved
with various resource sharing mechanisms in Section 4.

3.2. Fluid approximation

The fluid approximation (from the perspective of elastic users), denoted by A(F, J), complements the quasi-stationary
approximation: We now assume that the dynamics of elastic users are much slower than those of streaming users, i.e., the
λj,s and µj,s are much larger than the λj,e and 1/fj,e. This assumption is valid when we consider the combination of voice
calls (streaming) and large file transfer (elastic) applications. The dynamics of streaming users can then be studied by fixing
the number of elastic users in each segment. This approximation will be reflected in the notations by adding a superscript F .
Similar to A(Q, J), we will construct an approximating 2J-dimensional process under the assumption that NFs immediately
reaches steady state, whenever NFe changes.

5 With uniform admission control, theminimum required power is the same for all users, irrespective of their locations. As a consequence, theminimum
rates are determined by the locations: users further away from the base station orwith larger inter-cell interferencemust compromise for a lower rate. Thus,
although the admission policy is the same, users in different segments are distinguished by the achievable rates (as well as their own traffic distributions).
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3.2.1. Conditional distribution of streaming traffic
We fix the number of elastic users in each segment: NFe = ne. Under the ‘‘fluid’’ approximation assumption, we canmodel

the streaming users as a J-class Erlang-loss queue with finite capacity:

PF (ns | ne) ≡ P(NFs = ns | NFe = ne)

= cFs (ne)
J∏
j=1

ρ
nj,s
j,s

nj,s!
, (10)

where ρj,s =
λj,s
µj,s
. As before, we emphasize that the above expression depends on the holding time distribution only through

its mean. The constant cFs (ne) can again be determined by requiring that (10) adds up to 1 when summing (for fixed ne) over
all ns such that Pe(ne,ns)+ Ps(ns) ≤ P .

3.2.2. Unconditional marginal distributions
Next, we consider the dynamics of elastic users. When NFe = ne > 0, elastic users in segment j (if any) experience an

average transmission bit-rate (recall that ne is the sum over all components of the vector ne):
r j,e(ne) ≡ E[rj,e(ne,NFs ) | N

F
e = ne]

=

∑
ns

rj,e(ne,ns) PF (ns | ne), (11)

where the summation is taken over all ns for which Pe(ne,ns)+ Ps(ns) ≤ P . The (state-dependent) departure rate of elastic
users from segment j is

nj,er j,e(ne)/fj,e.
In order to fully describe the dynamics of the elastic users, we now determine the arrival rate, which also depends on the
state ne because of the employed admission control. Under our approximation assumptions, the probability of acceptance
in segment i is given by:

AFi,e(ne) ≡ P(P s(NFs )+ Pe(ne + ei,NFs ) ≤ P | N
F
e = ne),

and, consequently, the effective arrival rate of elastic users in segment i is

ΛFi,e(ne) ≡ λi,eA
F
i,e(ne).

3.2.3. Evaluation of performance measures
We can now calculate the following unconditional performance measures:

P(NFs = ns) =
∑
ne

PF (ns | ne)P(NFe = ne).

The unconditional blocking probabilities in segment i are

pFi,e =
∑
ne

(1− AFi,e(ne))P(N
F
e = ne),

and

pFi,s =
∑
ne

(1− AFi,s(ne))P(N
F
e = ne).

As for the quasi-stationary approximation, while the numerical evaluation of PF (ns | ne) and P(NFe = ne) is infeasible or
cumbersome in general, we consider the following special cases where closed-form expressions exist:

• Uniform admission control on streaming users. For uniform admission control, i.e., γi ≡ γ independent of i, we
can obtain the following elegant form of the distribution for the total number of streaming users (a truncated Poisson
distribution), as well as for the normalization constant:

P(NFs = ns | N
F
e = ne) = cFs (ne)

(ρs)
ns

ns!
,

and

cFs (ne) =

nF ,maxs (ne)∑
k=0

(ρs)
k

k!

−1 ,
where nF ,maxs (ne) is the maximum number of streaming users for which Pe(ne,ns)+ Ps(ns) ≤ P .
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• Uniform admission control on elastic users and perfectly-orthogonal codes. If we assume perfectly-orthogonal codes
(α = 0) and apply uniform admission control for elastic traffic by taking βj ≡ β independent of j,NFe is balanced [16]. In
this case, the dynamics of NFs depends on N

F
e only through the total number of elastic users Ne, so if we define

h(ns) = P − Ps(ns),
then, we can write

E[h(NFs ) | N
F
e = ne] = E[h(NFs ) | N

F
e = ne] ≡ g(ne).

If we further define νj =
WΓj

εj,e[η+Irj ]
, then, from Eqs. (5) and (11), we obtain

r j,e(ne) ≡ r j,e(ne) =
νj g(ne)
ne

.

Furthermore, AFi,e(ne) is independent of i and depends on ne only through the total number of elastic users, i.e., A
F
i,e(ne) ≡

AFe (ne).
It follows that, for arbitrary file size distributions, and 0 ≤ ne ≤ nmaxe = b

Pe
β
c:

P(NFe = ne) = cFe
ne∏
k=1

k AFe (k− 1)
g(k)

J∏
j=1

(
ρj,e

νj

)nj,e
,

with ρj,e = λj,e fj,e and cFe = P(N
F
e = 0) can be determined after normalization. We further obtain the distribution of the

total number of file transmissions:

P(NFe = ne) = c
F
e

(∑
j

ρj,e

νj

)ne ne∏
k=1

k AFe (k− 1)
g(k)

,

leading to a simple expression for the normalizing constant as before:

cFe =

(
nmaxe∑
ne=0

(∑
j

ρj,e

νj

)ne ne∏
k=1

k AFe (k− 1)
g(k)

)−1
.

Remark 2. If the codes are not perfectly orthogonal (α > 0), we can still apply the above analysis in case the background
noise and inter-cell interference are negligible (ηj + Irj � αPaj,eΓj) by choosing νj =

W
αεj,ePaj,e

.

4. CDMAmodel abstractions

In order to appreciate how our model maps to actual CDMA systems, we define the following variants based on
abstractions in terms of (a) power control granularity and (b) time sharing capability.

4.1. Fixed-Power, All-Users (FPAU) model

While power control is an essential element of the CDMA technology in terrestrial cellular systems such as UMTS,
it may be impractical or undesirable in emerging wireless networks where CDMA has been identified as a promising
candidate technology. For example, closed-loop feedback for power control may be impractical in underwater acoustic
sensor networks [17] due to the extremely high propagation delay, unreliable links, limited bandwidth and half-duplex
mode of operation of existing off-the-shelf underwater acoustic modems [18]. In addition, time slotting may be inefficient
since large guard bands may be required to account for the large and highly-varying propagation delay.
Hence, we define a Fixed-Power, All-Users (FPAU) model, where power control and time sharing are disabled at the base

station. Since J = 1, each user u is distinguished only in terms of its type (i.e., streaming (u ≡ s) vs elastic (u ≡ e)), the
system state (Ne,Ns) reduces to (Ne,Ns) andwe can drop the subscript j from the notations. In addition, since the base station
transmits simultaneously to all users, Pau = P − Pu, and Eq. (1) can be written as follows:

Ru ≤
WPu

εu

[
α(P − Pu)+

η+Iru
Γu

] ,
which can be rewritten as follows:

Pu ≥
Ruε

(
η+Irmax
Γmin
+ αP

)
W + αεRu

.

For linear and hexagonal networks and typical propagation models, Γu = Γmin and Iru = I
r
max when user u is located at the

edge of the cell.
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Accordingly, we can define the minimum power required by an (elastic, streaming) user to sustain transmission bit-rate
requirements of (re, rs) as follows:

β =
reε
(
η+Irmax
Γmin
+ αP

)
W + αεre

,

γ =
rsε
(
η+Irmax
Γmin
+ αP

)
W + αεrs

. (12)

Conditions (3) and (4) can be written as follows:

Neβ ≤ Pe,
Neβ + Nsγ ≤ P. (13)

By substituting Eq. (12) into Condition (13) and defining r = max(re, rs), we obtain the following:

Nere + Nsrs ≤
P(W + αεr)

ε
(
η+Irmax
Γmin
+ αP

) . (14)

4.1.1. Equivalent wired link analysis
According to Condition (14), if we define c ≡ P(W+αεr)

ε(
η+Irmax
Γmin

+αP)
, then the downlink transmission scenario in the FPAU model

can be approximated by awired link with capacity c shared amongst streaming and elastic users, where cs = Ps
P c is reserved

for streaming users. Details of the analysis of this model based on the quasi-stationary and fluid approximations (denoted
by A(Q) and A(F) respectively) can be found in [19].

4.1.2. General analysis
Referring to Remark 1, to apply the quasi-stationary approximation, the departure rate of elastic users from the cell

should only depend on the system state (Ns,Ne) through Ns. From Eq. (6), we have the following expression:

µe(Ne,Ns) =
W [P − Ps(Ns)]

εe

[
α(P − P−Ps(Ns)

Ne
)+

η+Irmax
Γmin

] .
It is not straightforward to obtain an approximation, µe(Ns), for µe(Ne,Ns). On the other hand, the fluid approximation
developed in Section 3.2 can be applied for this model.

4.2. Power Control, Time Sharing (PCTS) model

Based on our definition in Section 1, each streaming (elastic) user u has a fixed (minimum) transmission bit-rate
requirement, denoted by ru. According to our resource reservation policy, while each streaming user transmits at fixed bit-
rate ru, the transmission bit-rate of an elastic user u, Ru (≥ ru), depends on the resource unclaimed by streaming traffic,
given by P − Ps(Ns). From Eq. (1), Ru can be maximized by minimizing Pau . One approach to do so is to apply time sharing
amongst elastic users.
If we aggregate all elastic users, the resource sharing mechanism is such that the base station transmits using

(almost-) orthogonal codes to all users, where the aggregate elastic usermay be assigned several codes.Within the aggregate
user, elastic users sharing the same code are served in a time-slotted fashion so that they do not interfere with one another,
but only with elastic users using different codes and streaming traffic.
Hence, we define a Power Control, Time Sharing (PCTS)model, where the base station can performdiscrete power control

(at different steps of power) and also supports time sharing resource sharing amongst elastic users as described above. This
resource sharing mode is similar to UMTS/HSDPA, where up to Nc = 4 codes can be shared amongst data (elastic) users.
However, a ‘‘true’’ HSDPA system relies on channel-awareness, link adaptation and turbo codes, which offer a gain factor
of 3 in terms of mean throughput as demonstrated in [10]. Although these enhancements are not considered in our PCTS
model, the resulting gain in performance may be manifested by a gain function G(Ne) [12], without introducing additional
modeling complexity that may render the model non-tractable. We assume that Nc = 1 in our study.

4.2.1. Impact on admission control
According to the above resource sharing policy, the received signal at each streaming user u in segment j is interfered by

simultaneous transmissions to all other users, i.e., Pau = P − Pu and from (2) we obtain

γj =
rj,sεj,s[αPΓj + η + Irj ]

(W + αrj,sεj,s)Γj
.
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Table 1
UMTS cell and traffic parameters for performance evaluation.

UMTS and traffic parameters

P(W ) (20, 0.2)
Ps(W ) 10
η(W ) 6.09× 10−14

W (chips/s) 3.84× 106
ε (dB) 2
α 0.5
Propagation model Okumura–Hata model [21]
Inter-cell interference model Hexagonal network with maximum tx. power [13]
Link budget Table 8.3 [14]
re (kbps) 128
rs (kbps) 128

For an elastic user u in segment j, we have Pau = Ps(Ns) since its received signal is only interfered by streaming users.
Hence, the power required by an elastic user in segment j to sustain its transmission bit-rate requirement, rj,e, depends on
the number and location of streaming users as follows:

βj(Ns) =
rj,eεj,e[αPs(Ns)Γj + η + Irj ]

WΓj
.

The admission control scheme is such that a newly-arrived user is blocked only if accepting it would violate either the static
reservation policy or the minimum power requirement of any user. At any time, streaming traffic can claim a portion Ps of
the total power P . Therefore, the power required by an elastic user in segment j is given by:

βj ≡ βj(Ns) =
rj,eεj,e[αPs(Ns)Γj + η + Irj ]

WΓj
.

4.2.2. Impact on rate allocation
Using Eqs. (5) and (6), with time sharing amongst elastic users, the departure rate of elastic users in segment j is given

by:

µj,e(Ne,Ns) =
Nj,eW [P − Ps(Ns)]

fj,eNeεe[αPs(Ns)+
η+Irj
Γj
]

. (15)

Since Nj,eNe ≤ 1, we have the following:

µj,e(Ne,Ns) ≤
W [P − Ps(Ns)]

fj,eεe[αPs(Ns)+
η+Irj
Γj
]

≡ µj,e(Ns).

Referring to Remark 1, to apply the quasi-stationary approximation, it is necessary to remove the dependence ofµj,e(Ne,Ns)
onNe in Eq. (15). This can be achieved by approximatingµj,e(Ne,Ns)withµj,e(Ns); this approximation is exact when power
control is disabled (i.e., J = 1). As with the FPAU model, the fluid approximation can be applied for this model.
Further details on the derivation of the quasi-stationary and fluid approximations (denoted by A(Q, J) and A(F, J)

respectively) for this model can be found in [20].

5. Performance evaluation

In this section, our objective is to evaluate whether the performance gain achieved with time sharing and power control
justifies the added processing complexity and signaling overhead at the base station in a UMTS downlink scenario.
We consider a single UMTS cell whose radius, δJ , is computed using the reference link budget given in Table 8.3 of [14]

and the Okumura–Hata propagation model [21] for an urban macro cell. The inter-cell interference at each location within
the cell is computed based on the conservative approximation for a hexagonal network [13].
Elastic (streaming) users arrive at the cell according to a Poissonprocess at ratesλe (λs), transmissionbit-rate requirement

re (rs), target energy-to-noise ratio εe (εs), mean file size fe (holding time 1
µs
) and are assumed to be uniformly distributed

over the cell. In addition to the mean number of users, (E[Ne], E[Ns]), and blocking probabilities, (pe, ps), for each class of
traffic, we define the stretch, Se, for each admitted elastic user by normalizing the expected residence time, E[Te], by the
mean file size, fe, i.e., Se = E[Te]

fe
=

E[Ne]
λe(1−pe)

(cf. Little’s Theorem). A summary of the cell and traffic parameters is given in
Table 1.
In [19] and [20], through simulations, we have demonstrated that the user performance obtainedwith the FPAU and PCTS

model (as defined in Section 4) is almost insensitive to the actual distribution of the traffic parameters. This justifies the
application of the approximation techniques we develop, which depend on the traffic parameter distribution only through
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Fig. 1. Blocking probability for elastic (left) and streaming users (right) vs normalized offered elastic load obtained for quasi-stationary regime (J = 1).

themean values. In addition, we also demonstrated the accuracy of the approximations, particularly for the extreme (quasi-
stationary and fluid) traffic regimes.
Here, we focus on the comparison of the FPAUmodel and the PCTSmodel for the base station based on simulation as well

as the approximations. Unless otherwise stated, we assume that (ds, se) are exponentially distributed with mean 1
µs
and fe

respectively.

5.1. Simulation procedure

We develop a simulation program for our model by considering arrival/departure events of traffic users (elastic or
streaming). Each simulation scenario is defined according to the following procedure:
1. Fix the granularity of power control, J:
J = 1: no power control (FPAU or PCTS model);
J > 1: discrete power control (PCTS model).

2. Fix the total offered traffic by choosing the loading factor, l > 0, where ue + us = lc, ue = λefe and us = λsrs
µs
;

3. For each l, fix the trafficmix, uelc , by choosing ue, 0 ≤ ue ≤ lc;
4. For each traffic mix, select (λe, λs) to fit one of the following traffic regimes:
a. Quasi-stationary regime (S(Q, J), cf. Section 3.1);
b. Fluid regime (S(F, J), cf. Section 3.2);
c. Neutral regime (S(N, J), fits neither a nor b)
We generate 5 sets of simulation results for each scenario, for which the sample mean for each performance metric is

computed and used for performance comparison.

5.2. Impact of time sharing (FPAU vs PCTS (J = 1))

We begin by investigating the performance gain achieved with time sharing by comparing the performance obtained for
the FPAU and PCTS model (J = 1) for various traffic regimes.

5.2.1. Quasi-stationary regime
We plot (pe, ps) and (E[Ne], Se) as a function of the traffic mix, uec , 0 ≤ ue ≤ c in Figs. 1 and 2 respectively. We note that,

since it is not straightforward to apply the quasi-stationary approximation to the FPAU model (cf. Section 4.1.2), we utilize
the equivalent wired link analysis to obtain the corresponding quasi-stationary approximation, A(Q).
Based on the simulation results, we observe a performance gain achieved as a result of time sharing in terms of reduced

blockingprobabilities, queue length and sojourn time. This gain is expected since, for a givennumber of streamingusers, time
sharing amongst elastic users reduces the intra-cell interference power experienced by each elastic user, thereby increasing
the transmission bit-rate per elastic user. This gain is marginal when elastic load is low, since the additional interference
experienced by an elastic user due to other elastic users (without time sharing) is insignificant.
In terms of the accuracy of approximations, we observe that the performance obtained with the PCTS (J = 1) model is

well tracked by the corresponding approximation; on the other hand, the equivalent wired link analysis results in overly
conservative estimates of the performance for the FPAU model.

5.2.2. Fluid regime
We plot (pe, ps) and (E[Ne], Se) as a function of the traffic mix, uec , 0 ≤ ue ≤ c in Figs. 3 and 4 respectively.
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Fig. 2. Number of active elastic users (left) and stretch of each admitted elastic user vs normalized offered elastic load obtained for quasi-stationary regime
(J = 1).

Fig. 3. Blocking probability for elastic (left) and streaming users (right) vs normalized offered elastic load obtained for fluid regime (J = 1).

Fig. 4. Number of active elastic users (left) and stretch of each admitted elastic user vs normalized offered elastic load obtained for fluid regime (J = 1).

As with the quasi-stationary regime, we observe a performance gain achieved as a result of time sharing in terms of
reduced blocking probabilities, queue length and sojourn time. In terms of the accuracy of approximations, the blocking
performance obtainedwith bothmodels iswell tracked by the corresponding approximations. However, the approximations
achieved more optimistic estimates of the queue length and sojourn time of elastic users.
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Fig. 5. Blocking probability for elastic (left) and streaming users (right) vs normalized offered elastic load obtained for neutral regime (J = 1).

Fig. 6. Number of active elastic users (left) and stretch of each admitted elastic user vs normalized offered elastic load obtained for neutral regime (J = 1).

5.2.3. Neutral regime
We plot (pe, ps) and (E[Ne], Se) as a function of the traffic mix, uec , 0 ≤ ue ≤ c in Figs. 5 and 6 respectively.
As with the ‘‘extreme’’ traffic regimes, we observe a performance gain achieved as a result of time sharing in terms

of reduced blocking probabilities, queue length and sojourn time. For each performance metric, we note that the quasi-
stationary (fluid) approximation upper (lower) bounds the performance obtained in the neutral traffic regime, where a
tighter bound is obtained with the PCTS (J = 1) model.

5.3. Impact of power control (PCTS model)

Next, we investigate the performance gain achieved with various levels of power control granularity, J , for the PCTS
model. We define each segment j as the annulus between concentric rings of radius δj−1 and δj such that δj =

j
J δJ , 1≤ j ≤ J .

Since user arrivals are uniformly distributed over the cell, their arrival rate in each ring j is λj =
δ2j −δ

2
j−1

δ2J
λ, where δ0 = 0.

5.3.1. P = 20 W
We plot (pe, ps) and (E[Ne], Se) as a function of the traffic mix, uec , 0 ≤ ue ≤ c , for S(N, J) in Figs. 7 and 8 respectively for

J = 1, 2 and∞ (corresponding to the case of perfect power control) for a neutral traffic regime. We observe that the cell
performance obtained with simulation is lower bounded (well approximated) by A(F, J = 1) (A(Q, J = 1)), and that S(N, J)
is almost invariant with the value of J . Hence, no significant performance gain is achieved through finer power control in
this case, and therefore, the performance can be approximated with the PCTS (J = 1) model.

5.3.2. P = 0.2 W
In order to demonstrate the performance gain with finer power control, we repeat the simulations for the case of

P = 0.2 W, and plot (pe, ps) and (E[Ne], Se) as a function of the traffic mix, uec , 0 ≤ ue ≤ c , for S(F, J) in Figs. 9 and 10
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Fig. 7. Blocking probability for elastic (left) and streaming users (right) vs normalized offered elastic load obtained with approximation and simulation
for PCTS model (J = 1, 2,∞, P = 20 W, neutral regime).

Fig. 8. Number of active elastic users (left) and stretch of each admitted elastic user vs normalized offered elastic load obtained with approximation and
simulation for PCTS model (J = 1, 2,∞, P = 20 W, neutral regime).

Fig. 9. Blocking probability for elastic (left) and streaming users (right) vs normalized offered elastic load obtained with simulation for PCTS model
(J = 1, 2,∞, P = 0.2 W, fluid regime).

respectively. In this case, we note that as power control becomes finer (increasing J), the performance obtained with S(F, J)
is improved significantly (e.g., reduced blocking and sojourn time).
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Fig. 10. Number of active elastic users (left) and stretch of each admitted elastic user vs normalized offered elastic load obtained with simulation for PCTS
model (J = 1, 2,∞, P = 0.2 W, fluid regime).

5.4. Comparison with other fair resource sharing policies

In this paper, we assume that all elastic users receive an equal portion of the available power, so that we can apply
well-known results from Generalized Multi-Class Processor Sharing [15] to model their behavior in the quasi-stationary
approximation. With such an allocation policy, the transmission bit-rate of an elastic user will decrease with its distance
from base station. This follows the same pattern as an optimal bit-rate allocation, but it is not necessarily optimal. It is also
not max–min fair, since it is possible to increase the bit-rate in a segment by decreasing the bit-rate in a segment closer to
the base station while leaving the bit-rates in the other segments unchanged.

5.5. Extension to multi-cell scenario

In this paper, we considered the analysis of a single CDMA cell in order to simplify the way in which interference is taken
into account. However, our one cell model can be easily embedded in a multi-cell scenario where each base station adjusts
its power according to the level of the interference encountered or when the base stations transmit at a fixed power. The
assumption of orthogonal codes or negligible interference was used only for obtaining a closed-form solution in the fluid
approximation for the distribution of the number of elastic users.

6. Conclusions

Future Generation CDMA wireless systems can simultaneously accommodate users carrying widely heterogeneous
applications. Since resources are limited, particularly in the air interface, admission control is necessary to ensure that all
active users are accommodated with sufficient bandwidth to meet their specific Quality of Service requirements.
We propose a general traffic management framework that supports differentiated admission control, resource sharing

and rate allocation strategies, such that users with stringent transmission bit-rate requirements (‘‘streaming traffic’’) are
protected while sufficient capacity over longer time intervals to delay-tolerant users (‘‘elastic traffic’’) is offered. This
framework permits discrete power control by distinguishing users according to their distance from the base station through
cell partitioning, and also supports a time sharing resource sharing mode to improve rate allocation to elastic traffic while
guaranteeing the transmission bit-rate requirements of all users. While our admission control strategy may not satisfy
classical notions of fairness, we aim to reduce congestion and increase overall throughput of elastic users.
Since the exact analysis to evaluate the performance of such an integrated services system is non-tractable in general, we

define extreme traffic regimes (quasi-stationary and fluid) for which time-scale decomposition can be applied to isolate the
traffic streams, from which known results from fluid queueing models are used to approximate the performance for each
user type. For the extreme traffic regimes, simulation results suggest that the performance is almost insensitive to traffic
parameter distributions, and is well approximated by our proposed approximations. In addition, we also demonstrate the
performance gain achievedwith finer power control, as well as applying time sharing amongst elastic users to improve their
rate allocation.
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