Revision History:
- 12/12/2013
Version 0.3.0 main changes:• Add a template and guide for adding new algorithms;
• Improve parameter settings and documentation ;
• Improve documentation on data formats and key functions;• Amend the "OGD" function to use different loss types;
• Make some names consistent and fixed some minor bugs - 23/09/2013
Version 0.2.3 main changes:
• Make the library fully compatible with Octave;
• Include C/C++ function rand_c for random generator;
• Include arg_check to check argument validation;
• Fixed some other bugs. - 27/07/2013
Version 0.2.0 main changes:
- 27/12/2012
Version 0.1.0: The MATLAB beta version is now availabe! It supports binary classification. - 6/7/2012
The MATLAB alpha version is availabe for testing upon email request.
-
• Support online multicclass classification;
• C/C++ implementation for core functions;
• 16 algorithms and variants for binary classification;
• 13 algorithms and variants for multiclass classification.
TODO list:
- Incoporate the AUC maximization algorithms
- Incorporate the cost-sensitive online learning algorithms
- Incoporate the kernel-based online learning algorithms